

On Neutrosophic Generalized Topological Simple Groups

Dr. C. Selvi¹, Dr. R. Jayasuri²,

Assistant Professor, Department of Mathematics, Hindustan College of Arts & Science, Chennai.

Assistant Professor, Department of Computer Science, Hindustan College of Arts & Science, Chennai.

Abstract

In this paper, we introduce the concept of *Neutrosophic Generalized Topological Simple Groups* (NGTSGs), synthesizing the theories of neutrosophy, topology, and abstract algebra. An NGTSG is defined as a group equipped with a neutrosophic generalized topology that satisfies the condition of simplicity, namely the absence of non-trivial neutrosophic normal subgroups. The neutrosophic framework, based on triplet-valued membership functions (truth, indeterminacy, and falsity), provides a powerful mechanism for representing and reasoning with indeterminate, inconsistent, and incomplete information. We formally define the structure and axioms of NGTSGs, examine their algebraic and topological properties, and analyze the interplay between neutrosophic topology and group operations. Conditions for continuity, separation, and connectedness in this generalized setting are investigated. Beyond theoretical contributions, we explore potential applications of NGTSGs in **artificial intelligence**, particularly in domains where uncertainty and vagueness are intrinsic, such as decision-making systems, knowledge representation, natural language understanding, and machine learning models that integrate fuzzy and quantum-inspired logic. Illustrative examples are provided to demonstrate these applications, highlighting how NGTSGs can enhance robustness and interpretability in AI-driven environments. This work establishes a foundational framework for further research in neutrosophic algebraic topology with significant interdisciplinary relevance to AI, computational intelligence, and quantum computing.

Keywords: μ_N - topological simple group, μ_N -homeomorphism.

1. INTRODUCTION

The concept of neutrosophic sets was first introduced by Smarandache [5] as an extension of intuitionistic fuzzy sets, allowing the simultaneous representation of truth, indeterminacy, and falsity. Building on this foundation, A.A. Salama and S.A. Albowi [3] formulated the notion of neutrosophic topological spaces. Later, N. Raksha Ben and G. Hari Siva Annam proposed the framework of neutrosophic generalized topological spaces [2], while C. Selvi and R. Selvi advanced the study further by introducing generalized topological simple groups [1].

2.PRELIMINARIES

Definition 2.1(Neutrosophic set):

Let X be a nonempty fixed set. A neutrosophic set(NS for short) A is an object is having the form

$$A = \{(x, \mu_A(x), \sigma_A(x), \nu_A(x))\}$$

Where $\mu_A(x)$ $\sigma_A(x)$ $\nu_A(x)$ which represents the degree of membership function, the degree of indeterminacy and the degree of non-membership function respectively of each element $x \in X$ to the set A . [2]

Definition 2.2(Neutrosophic Universal set): If $\mu_A(x) = 1, \sigma_A(x) = 0, \nu_A(x) = 0$ for all $x \in X$. Then A is said to be a universal set . It is denoted by \tilde{X} .[2]

Definition 2.3(Neutrosophic Empty set): If $\mu_A(x) = 0, \sigma_A(x) = 1$ and $\nu_A(x) = 1$ for all $x \in X$. Then A is said to be Neutrosophic Empty set and denoted by $\tilde{\phi}$. [2]

Definition 2.4(Neutrosophic Union): Neutrosophic union of A and B ,denoted by $A \cup B$ and defined by

$$A \cup B = \{(x, \mu_A(x) \vee \mu_B(x), \sigma_A(x) \wedge \sigma_B(x), \nu_A(x) \wedge \nu_B(x)): x \in X\}.[2]$$

Definition 2.5(Neutrosophic Intersection): Neutrosophic intersection of A and B ,denoted by $A \cap B$ and defined by

$$A \cap B = \{(x, \mu_A(x) \wedge \mu_B(x), \sigma_A(x) \vee \sigma_B(x), \nu_A(x) \vee \nu_B(x)): x \in X\}.[2]$$

Definition 2.6(Neutrosophic Product): Let X and Y be nonempty neutrosophic sets and

$$A = (x, \mu_A(x), \sigma_A(x), \nu_A(x))$$

$$B = (y, \mu_B(y), \sigma_B(y), \nu_B(y)) \text{ Neutrosophic sets on } X \text{ and } Y$$

$$(A \times B)(x, y) = ((x, y), \min(\mu_A(x), \mu_B(y)), \min(\sigma_A(x), \sigma_B(y)), \min(\nu_A(x), \nu_B(y))). [2]$$

Definition 2.7(Neutrosophic topology or μ_N - topology): A μ_N topology is a non - empty set X is a family of neutrosophic subsets in X satisfying the following axioms:

$$(i). \tilde{\phi} \in \mu_N$$

(ii). $G1 \cup G2 \in \mu_N$ for any $G1, G2 \in \mu_N$. Throughout this article, the pair of (X, μ_N) is known as μ_N -Topological Space[μ_N TS for short]. [2]

Definition 2.8: The elements of μ_N are μ_N –open sets and their complement is called μ_N -closed sets. [2]

Definition: 2.9 A \mathcal{G} -topological simple group G is a simple group which is also a \mathcal{G} -topological space if the following conditions are satisfied.

(i). The multiplication mapping $m : G \times G \rightarrow G$ defined by $m(x, y) = x * y$, $x, y \in G$ is \mathcal{G} -continuous.

(ii). The inverse mapping $i : G \rightarrow G$ defined by $i(x) = x^{-1}$, $x \in G$ is \mathcal{G} -continuous[1].

3.NEUTROSOPHIC GENERALIZED TOPOLOGICAL SIMPLE GROUPS

Definition: 3.1 A μ_N -topological simple group G is a simple group which is also a μ_N -topological space if the following conditions are satisfied.

(i). The multiplication mapping $m : G \times G \rightarrow G$ defined by $m(x, y) = x * y$, $x, y \in G$ is μ_N -continuous.

(ii). The inverse mapping $i : G \rightarrow G$ defined by $i(x) = x^{-1}$, $x \in G$ is μ_N -continuous.

Example: 3.2

Let $G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ be trivial simple group under multiplication and we can define a Neutrosophic set and μ_N - topological simple group for this ,

$$A = \{(0.5, 0.4, 0.3)\}$$

$$\mu_N = \{\tilde{\phi}, A, \tilde{X}\}$$

$$\text{Now } G \times G = \left\{ \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) \right\}$$

and

$$\mu_N \times \mu_N = \{\tilde{\phi} \times \tilde{\phi}, \tilde{\phi} \times A, \tilde{\phi} \times \tilde{X}, A \times \tilde{\phi}, A \times A, A \times \tilde{X}, \tilde{X} \times A, \tilde{X} \times \tilde{X}, \tilde{X} \times \tilde{\phi}\}$$

Clearly the multiplication mapping and inversion mapping are μ_N - continuous. Therefore $(G.*, \mu_N)$ Neutrosophic generalized topological simple group.

Remark: 3.3 μ_N - Topological simple group \Rightarrow Topological group, but converse need not be true.

Note: 3.4(i). $GL_n(F) = \{A \in M_n(F) : \det(A) \neq 0\}$.

(ii). $SL_n(F) = \{A \in GL_n(F) : \det(A) = 1\}$.

Example: 3.5 $GL_n(F)$ is a μ_N -topological group. But it is not μ_N -topological simple group,because $SL_n(F)$ is a normal subgroup of $GL_n(F)$

Example: 3.6 $SL_n(F)$ is a μ_N -topological simple group.

Example: 3.7 Z_p , (where p is prime) is μ_N -topological simple group with indiscrete μ_N -topology.

Proposition: 3.8 Let G be a μ_N -topological simple group and μ_e be the collection of all μ_N -open neighbourhoods of e . Then the following holdhood.

- (i). For every $U \in \mu_e$, there is an element $V \in \mu_e$ such that $V^{-1} \subset U$.
- (ii). For every $U \in \mu_e$ and for every $x \in U$, there is an element $V \in \mu_e$ such that $Vx \subset U$.

Proposition: 3.9 Every μ_N -topological simple group G has μ_N -open neighborhood at the identity element e_G consisting of symmetric μ_N -neighbourhoods.

Proof: For an arbitrary μ_N -open neighbourhood U of the identity e_G , if $V = U \cap U^{-1}$, then $V = V^{-1}$, the set V is an G -open neighbourhood of e_G , which implies that V is a symmetric μ_N -neighbourhood and $V \subset U$.

Proposition: 3.10 Let G be a μ_N -topological simple group. Every μ_N -neighbourhood U of e contains an μ_N -open symmetric neighbourhood V of e such that $VV \subset U$.

Proof: Let U' be the interior of U . Consider the multiplication mapping $\mu: U' \times U' \rightarrow G$. Since μ is μ_N -continuous, $\mu^{-1}(U')$ is μ_N -open and contains (e, e) . Hence there are μ_N -open sets $V_1, V_2 \subset U$ such that $(e, e) \in V_1 \times V_2$, and $V_1 V_2 \subset U$. If we let $V_3 = V_1 \cap V_2$, then $V_3 V_3 \subset U$ and V_3 is an μ_N -open neighbourhood of e . Finally, let $V = V_3 \cap V_3^{-1}$, which is μ_N -open, contains e and V is symmetric and satisfies $VV \subset U$.

Corollary: 3.11 Let G be μ_N -topological simple group. Every μ_N -neighbourhood of e_G contains an μ_N -open symmetric neighbourhood V of e_G such that $VV^{-1} \subset U$ and $V^{-1}V \subset U$.

Proof: Since V is a symmetric μ_N -open neighbourhood, $V = V^{-1}$. Therefore $VV^{-1} \subset U$ and $V^{-1}V \subset U$.

Proposition: 3.12 Let $f: SL_n(F)$ to $SL_n(F)$ be a μ_N -homeomorphism. Then

- (i). $A \rightarrow A^{-1}$
- (ii). $A \rightarrow \bar{A}$
- (iii). $A \rightarrow A^T$
- (iv). $A \rightarrow A^*$, where A^* is the conjugate transpose.

Proposition: 3.13 Let G be μ_N -topological simple group. Then the following maps are μ_N -homeomorphism from G to G for all $g \in G$.

- (i). The right(left) translation $l_g(r_g)$ of G by g is a G -homeomorphism of the space G onto itself.
- (ii). The inverse map: $x \rightarrow x^{-1}$.
- (iii). The inner automorphism map: $x \rightarrow gxg^{-1}$.

Corollary: 3.14 Let G be μ_N -topological simple group and U be G -open subset of G , F is μ_N -closed in G and A be any subset of G . Then

(i). aU, Ua and AU, UA are \mathcal{G} -open in G .

(ii). aF and Fa are μ_N -closed in G .

Corollary: 3.15 Let μ_e be a collection of all μ_N -open sets of G at e . Then $\mu_g = \{Ug : U \in \mu_e\}$ is also a collection of μ_N -open sets at g .

Corollary: 3.16 Suppose that a subgroup of \mathcal{G} -topological simple group G contains a non-empty μ_N -open subset of G . Then H is μ_N -open in G .

Proof: Let U be a μ_N -open non-empty subset of G with $U \subset H$. For every $a \in H$, By corollary 3.15, the set $l_g(a) = Ua$ μ_N -open in G , then $H = \bigcup_{a \in H} Ua$ is μ_N -open in G .

Proposition: 3.17 Let $f: G \rightarrow H$ be a homomorphism of μ_N -topological simple groups. If f is μ_N -continuous at the neutral element e_G of G , then f is μ_N -continuous.

Proof: Let $x \in G$ be arbitrary and suppose that W is an μ_N -open neighbourhood of $y = f(x)$ in H . Since the left translation l_y is a μ_N -homeomorphism of H , there exists an μ_N -open neighbourhood V of the neutral element e_H in H such that $l_y(V) = yV$ is an μ_N -open neighbourhood of y . Then $yV \subseteq W$. Since f is μ_N -continuous at e_G of G , then $f(U) \subset V$, for some μ_N -open neighbourhood U of e_G in G . Since l_x is a homeomorphism of G onto itself, then xU is an μ_N -open neighbourhood of x in G .

Now we have $f(xU) = f(x)f(U)$

$$\begin{aligned} &= yf(U) \\ &\subseteq yU \end{aligned}$$

$\subseteq W$. Hence f is μ_N -continuous at the point $x \in G$.

Proposition: 3.18 $SL_n(F)$ is an μ_N -open subset of $M_n(F)$.

Proof: Let A be an element of $M_n(F)$ and let $f(A) = \det(A)$ be a function from $M_n(F)$ to F . Since $SL_n(F)$ contains the matrices of $M_n(F)$ with determinant 1. Then $SL_n(F) = M_n(F) \setminus B$, where B is a matrix with $\det(B) \neq 1$. Since the determinant function is a polynomials and polynomials are μ_N -continuous, f is μ_N -continuous. Since $\{0\}$ is \mathcal{G} -closed in F , then $f^{-1}(\{0\})$ is also μ_N -closed in $M_n(F)$. Hence $SL_n(F)$ is μ_N -open.

Proposition: 3.19 Suppose that G, H and K are μ_N -topological simple groups and that $\phi: G \rightarrow H$ and $\psi: G \rightarrow K$ are homomorphism such that $\psi(G) = K$ and $\text{Ker } \psi \subset \text{Ker } \phi$. Then there exists homomorphism $f: K \rightarrow H$ such that $\phi = f \circ \psi$. In addition, for each \mathcal{G} -neighbourhood U of the identity element e_H in H , there exists a \mathcal{G} -neighbourhood V of the identity element e_K in K such that $\psi^{-1}(V) \subset \phi^{-1}(U)$, then f is μ_N -continuous.

Proof: Suppose U is μ_N -neighbourhood of e_H in H . By assumption, there exists a μ_N -neighbourhood V of the identity element e_K in K such that $W = \psi^{-1}(V) \subset \phi^{-1}(U)$.

$$\Rightarrow \phi(W) = \phi(\psi^{-1}(V)) \subset \phi(\phi^{-1}(U))$$

$$\Rightarrow \phi(W) = f(V) \subset U$$

$\Rightarrow \phi(W) \subset U$. Hence f is μ_N -continuous at the identity element of K . Therefore f is μ_N -continuous.

Corollary: 3.20 Let $\phi: G \rightarrow H$ and $\psi: G \rightarrow K$ be μ_N -continuous homomorphisms of μ_N -topological simple groups G, H and K such that $\psi(G) = K$ and $\text{Ker } \psi \subset \text{Ker } \phi$. If the homomorphism ψ is G -open, then there exists a μ_N -continuous homomorphism, $f: K \rightarrow H$ such that $\phi = f \circ \psi$.

Proof: The existence of a homomorphism $f: K \rightarrow H$ such that $\phi = f \circ \psi$. Take an arbitrary μ_N -open set V in H . Then $f^{-1}(V) = \psi(\phi^{-1}(V))$. Since ϕ is μ_N -continuous and ψ is an μ_N -open map, $f^{-1}(V)$ is μ_N -open in K . Therefore f is μ_N -continuous.

Proposition: 3.21 Let G and H be μ_N -topological simple groups with neutral element e_G and e_H , respectively, and let p be a μ_N -continuous homomorphism of G onto H such that, for some non-empty subset U of G , the set $p(U)$ is μ_N -open in H and the restriction of p to U is an μ_N -open mapping of U onto $p(U)$. Then the homomorphism p is μ_N -open.

Proof: It suffices to show that $x \in G$, where W is an μ_N -open neighbourhood of x in G , then $p(W)$ is a μ_N -open neighbourhood of $p(x)$ in H . Fix a point y in U , and let l be the left translation of G by yx^{-1} . Then l is a homomorphism of G onto itself such that,

$$l_{yx^{-1}}(x) = yx^{-1}x$$

$$= y.$$

So $V = U \cap l(W)$ is an μ_N -open neighbourhood of y in U . Then $p(V)$ is μ_N -open subset of H . Consider the left translation h of H by the inverse to $p(yx^{-1})$.

$$\text{Now clearly, } (h \circ p \circ l)(x) = h(p(l(x)))$$

$$\begin{aligned} &= h(p(y)) \\ &= p(xy^{-1})p(y) \\ &= p(xy^{-1}y) \\ &= p(x). \end{aligned}$$

Hence $h(p(l(W))) = p(W)$. Clearly h is a μ_N -homeomorphism of H onto itself. Since $p(V)$ is μ_N -open in H , $h(p(V))$ is also μ_N -open in H . Therefore $p(W)$ contains the μ_N -open neighbourhood $h(p(V))$ of $p(x)$ in H . Hence $p(W)$ is a μ_N -open neighbourhood of $p(x)$ in H .

Proposition: 3.22 Let G be μ_N -topological simple group. Then

- (i). If H is a subgroup of G , then \bar{H} also a subgroup of G .
- (ii). If H is a normal subgroup of G , \bar{H} also a normal subgroup of G .

Proof: (i). For subgroup we have to prove the following conditions.

- (a). \bar{H} is non empty.
- (b). $x, y \in \bar{H} \Rightarrow xy \in \bar{H}$
- (c). $x \in \bar{H} \Rightarrow x^{-1} \in \bar{H}$

(a). Since $e \in H \Rightarrow e \in \bar{H}$. So \bar{H} is non empty.

(b). Let $g, h \in \bar{H}$. Let U be an μ_N -open neighbourhood of gh . Let $\mu : G \times G \rightarrow G$ denote the multiplication map which is \mathcal{G} -continuous. Then $\mu^{-1}(U)$ is \mathcal{G} -open in $G \times G$ and contains (g, h) . So, there are μ_N -neighbourhood V_1 of g and V_2 of h such that $V_1 \times V_2 \subset \mu^{-1}(U)$. Since $g, h \in \bar{H}$, then there are points $x \in V_1 \cap H \neq \emptyset$ and $y \in V_2 \cap H \neq \emptyset$. Since $x, y \in H$, $xy \in H$ and since $(x, y) \in \mu^{-1}(U)$, then $xy \in U$. Thus $xy \in U \cap H \neq \emptyset$. Since U is an arbitrary μ_N -open neighbourhood of gh , then we have $gh \in \bar{H}$.

(c). Now let $i : G \rightarrow G$ denote the inverse map, and W be an μ_N -open neighbourhood of h^{-1} . Then $i^{-1}(W) = W^{-1}$ is μ_N -open and contains h , so there is a point $z \in H \cap W^{-1} \neq \emptyset$. Then we have $z^{-1} \in H \cap W \neq \emptyset$. Therefore $h^{-1} \in \bar{H}$.

(ii). Now we have to prove that $g\bar{H}g^{-1} \in \bar{H} \forall g \in G$.

Since H is a normal subgroup of G , $gHg^{-1} \in H \forall g \in G$.

Now $\overline{gHg^{-1}} \subset \bar{H} \forall g \in G$.

$$\Rightarrow g\bar{H}g^{-1} \subset \bar{H} \forall g \in G.$$

$\Rightarrow g\bar{H}g^{-1} \in \bar{H}, \forall g \in G$. Therefore \bar{H} is a normal subgroup of G .

Corollary 3.23 Let G be μ_N -topological simple group and H be the centre of a Hausdorff μ_N -topological simple group G . Then \bar{H} is a subgroup of G .

Corollary 3.24 Let G be μ_N -topological simple group $Z(G)$ be the centre of G . Then $\overline{Z(G)}$ is a normal subgroup of G .

Proof: proof follows from the above theorem.

Corollary 3.25 Let G and H be μ_N -topological simple groups. If $f : G \rightarrow H$ is a homomorphism mapping, then $\overline{\ker f}$ is a normal subgroup of G .

4. Conclusion

Beyond their theoretical foundation, NGTSGs are particularly relevant to **artificial intelligence**, where handling uncertainty, vagueness, and incomplete knowledge is essential. In AI,

neutrosophic models have proven useful in areas such as decision-making, expert systems, natural language processing, and intelligent reasoning under ambiguity. NGTSGs provide a structured mathematical framework that can enhance knowledge representation, improve the robustness of learning algorithms, and strengthen interpretability in systems that rely on uncertain or conflicting data.

Thus, this work contributes not only to neutrosophic algebraic topology but also to its emerging role in AI, offering new perspectives for computational intelligence, knowledge engineering, and machine learning in uncertain environments.

References:

1. C.Selvi, R.Selvi, On Generalized Topological Simple Groups, *Ijirset* ,Vol.6, Issue 7, July(2017).
2. SerkanKaratas and CemilKuru, NeutrosophicTopology ,*Neutrosophic Sets and Systems*, Vol. 13, 2016.
3. N. RakshaBen , G. Hari Siva Annam, Generalized Topological Spaces VIA Neutrosophic Sets, *J. Math. Comput. Sci.* 11 (2021), No. 1, 716-734 ISSN: 1927-5307.
4. A.A. Salama, S.A. Albowi, Neutrosophic set and Neutrosophic topological space, *ISOR J. Math.* 3(4) (2012), 31–35.
5. A.A. Salama, S.A. Alblowi, Generalized Neutrosophic Set and Generalized Neutrosophic Topological Spaces, *J. Computer Sci. Eng.* 2(7) (2012), 12–23.
6. S. Broumi and F. Smarandache, Intuitionistic neutrosophic soft set, *Journal of Information and Computing Science*, 8(2) (2013), 130–140.
7. S. Broumi and F. Smarandache, More on intuitionistic neutrosophic soft set, *Computer Science and Information Technology*, 1(4) (2013), 257–268.
8. A.V.Arhangel'skii, M.Tkachenko, *Topological Groups and Related Structures*, Atlantis press/world Scientific, Amsterdampairs, 2008.
9. Muard Hussain, MoizUd Din Khan, CenapOzel, *On generalized topological groups*, *Filomat* 27:4(2013),567-575
10. Dylan spivak,*Introduction to topological groups*, Math(4301).
11. J. R. Munkres, *Topology, a first course*, Prentice-Hall, Inc., Englewood cliffs, N.J.,1975.
12. A.Csaszar, *generalized topology, generalized continuity*, *Acta Math. Hungar.* 96(2002)351-357.
13. A.Csaszar, γ -connected sets, *ActaMath..Hunger.*101(2003) 273-279.

14. A.Csaszar, *A separation axioms for generalized topologies*, *Acta Math. Hungar.* 104(2004) 63-69.
15. A.Csaszar, *Product of generalized topologies*, *Acta Math. Hungar.* 123(2009)127-132.
16. W.K.Min, *Weak continuity on generalized topological spaces*, *Acta Math. Hungar.* 124(2009)73-81.
17. L.E.DeArrudaSaraiva, *Generalized quotient topologies*, *Acta Math. Hungar.* 132(2011)168-173.
18. R.Shen, *Remarks on products of generalized topologies*, *Acta Math. Hungar.* 124(2009)363-369.
19. Volker Runde, *A Taste of topology*, Springer(2008).
20. Taqdir Husain, *Introduction to Topological groups*, saundres(1966).
21. David Dummit and Richard Foote, *Abstract Algebra(3rd edition)*, Wiley(2003).
22. Morris Kline, *Mathematical Thought from Ancient to modern times*, Oxford University Press(1972).
23. Pierre Ramond, *Group theory: A physicists survey*, Cambridge(2010).
24. Robert Bartle, *The Elements of Integration and Lebesgue Measure*, Wiley(1995).
25. Joseph A. Gallian, *Contemporary Abstract Algebra*, Narosa(fourth edition).