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Abstract: -  

 Gear assemblies are essential components in many industrial machines, and even minor defects can 
lead to unplanned shutdowns, financial losses, and possible safety concerns. Detecting faults at an early 
stage is therefore crucial for predictive maintenance. This study introduces a hybrid deep learning model 
that combines Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) units 
to automatically diagnose gear faults using vibration data. In this method, the collected vibration signals 
are first transformed into spectrograms so that important frequency-based information becomes more 
visible. The CNN layers learn spatial features from these spectrograms, while the LSTM layers capture 
the time-dependent patterns that reflect different gear conditions. By integrating these two architectures, 
the proposed system delivers more reliable and accurate fault detection than traditional machine 
learning approaches or standalone CNN/LSTM models. Tests conducted on a standard gear-fault 
dataset—including conditions like gear cracks, tooth wear, and broken teeth—show that the hybrid 
CNN–LSTM framework provides superior accuracy and greater robustness. This makes it a strong 
candidate for real-time, automated monitoring of gear health in industrial settings.  

Keywords: Gear Defect Detection, CNN-LSTM Hybrid Model, Condition Monitoring, Vibration 

Analysis, Deep Learning, Predictive Maintenance, Fault Diagnosis, Time-Frequency Analysis, 

Spectrogram, Industrial Automation. 

1. Introduction 

Gears are essential elements in many mechanical applications, ranging from vehicle 
transmission systems to heavy industrial equipment. Their main function is to transfer motion 
and power smoothly and efficiently. Because they operate continuously under varying loads, 
gears often develop faults such as wear, cracking, pitting, or tooth breakage. If these issues are 
not identified in time, they can cause serious failures, unexpected shutdowns, and high 
maintenance expenses. This makes early and precise fault detection extremely important for 
maintaining reliability, safety, and overall performance of mechanical systems.Conventional 
approaches to gear fault diagnosis depend largely on manual inspection, handcrafted feature 
extraction, and traditional signal-processing methods. These techniques are labor-intensive, 
require considerable expertise, and usually do not adapt well to changing operating conditions. 
With the rapid progress in AI and DL, automated fault detection has become a strong alternative 
because it can learn complex patterns directly from raw or lightly processed vibration 
data.CNNs have shown exceptional capability in extracting spatial information from images 
and spectrograms produced from vibration signals. However, they are not ideal for capturing 
the temporal relationships in time-series data. In contrast, recurrent neural networks, especially 
LSTM models, are effective at learning sequential dependencies but may not efficiently 
represent localized spatial details.To address these limitations, the present study introduces a 
hybrid DL model that integrates both CNN and LSTM architectures. In this framework, 
vibration signals collected from gear systems are converted into spectrograms using time–
frequency analysis. The CNN layers extract key spatial characteristics from these 
spectrograms, while the LSTM layers learn the temporal behavior associated with different 
gear conditions. Combining  strengths of both models, the hybrid CNN LSTM approach 
enhances accuracy and improves robustness in classifying various gear defects.The model is 
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tested on standard gear-fault datasets containing several defect types under diverse operating 
conditions. Experimental findings indicate that the CNN–LSTM hybrid system performs better 
than traditional ML methods and individual DL models, making it a strong candidate for real 
time gear health monitoring in industrial settings.Table 1 summarizes conventional techniques 
along with their limitations. 

              Table1 Traditional Techniques Used for gear defect detection and Limitation 

Sr. No.  Traditional 
Technique Used 

Application in Gear Defect 
Detection 

Limitations of Technique 

1 Visual Inspection Detecting surface defects 
like cracks, pitting, and 
wear 

Subjective, labor-intensive, not 
reliable for internal defects, prone 
to human error 

2 Vibration Analysis 
(Classical FFT) 

Monitoring gear mesh 
frequency changes 
indicating defects 

Requires manual feature 
extraction, limited sensitivity to 
early-stage faults 

3 Acoustic Emission 
Analysis 

Identifying crack initiation 
and material deformation in 
gears 

Sensitive to noise, complex signal 
interpretation, requires expertise 

4 Oil Debris Analysis Detecting wear by 
analyzing metal particles in 
lubricants 

Cannot pinpoint defect location or 
type, indirect indication only 

5 Thermography Detecting temperature 
changes due to friction from 
gear misalignment/wear 

Affected by ambient conditions, 
low resolution, unsuitable for 
internal defect identification 

6 MPI Detecting surface and near 
surface cracks in 
ferromagnetic gears 

Not suitable for non-
ferromagnetic materials, time-
consuming, requires gear 
disassembly 

7 Ultrasonic Testing Locating internal flaws and 
cracks in gears 

Requires skilled operator, not 
effective on complex geometries, 
slow for high-volume testing 

8 Strain Gauge 
Analysis 

Monitoring gear load and 
deformation behavior under 
stress 

Requires physical sensor 
attachment, affected by noise, not 
ideal for real-time fault detection 

 

 

 

                          

                       Fig. 1. Images captured across various defects 
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The key contribution of the work as follows 

 Development of a hybrid CNN-LSTM model specifically designed for gear defect detection 
using vibration and acoustic data. 
 

 Transformation of raw signal data into spectrograms for effective spatial and temporal feature 
extraction. 
 

 Construction and preprocessing of a comprehensive gear fault dataset to train and evaluate the 
model under varying defect conditions. 
 

 Extensive performance evaluation comparing hybrid model with standalone CNN and LSTM 
architectures to highlight its improved accuracy and robustness. 
 

 Demonstration of  model’s feasibility for real  time, automated fault detection in industrial gear 
systems, contributing to predictive maintenance and reduced downtime. 

This research bridges gap between traditional fault diagnosis techniques and modern DL approaches, 
advancing field of intelligent condition monitoring in mechanical systems. 

Literature Survey 

Paper introduces a DL framework for the identification and classification of surface defects, using 
CNNs. Important feature of research is creation of artificial data by means of GANs to enlarge the 
training datasets, thus improving  accuracy of the model in  case of scarce real-world data.The method 
addresses challenges in surface defect detection in manufacturing processes, where defects can be subtle 
and varied. The CNN model is trained on both real and synthetic images, significantly improving its 
ability to classify and detect surface anomalies. The paper presents a thorough evaluation of the model, 
comparing it against traditional defect detection methods. It suggests that this approach is highly 
scalable and can be integrated into automated quality control systems. The findings offer valuable 
insights into use of DL for industrial applications. Finally, the study concludes with recommendations 
on future research directions, including improving synthetic data quality [7]. 

This author discusses applying CNN and LSTM networks to predict melt pool temperatures during wire 
arc additive manufacturing (WAAM). The approach combines CNNs feature extraction and LSTMs for 
temporal prediction, making it suitable for dynamic processes. The CNN is responsible for capturing 
spatial patterns from images, while LSTM captures temporal dependencies in data. Model successfully 
predicts thermal behavior, which is critical for optimizing the additive manufacturing process. The 
authors show that this hybrid deep learning approach outperforms traditional methods for terms of 
accuracy. Their results demonstrate that ML can enhance precision of temperature predictions, leading 
to better control over the WAAM process. The paper highlights the importance of real-time prediction 
for improving the quality of printed parts. Furthermore, authors discuss  potential for integrating this 
model into an industrial setting for automated quality control. The paper concludes that combining 
CNNs and LSTMs offers significant advantages over single-model approaches in complex 
manufacturing tasks. Future work on optimizing model further and incorporating additional features for 
improved predictions [8].  

This paper author presents a tool wear prediction model based on  combination of CNNs and 
bidirectional LSTMs, enhanced by Improved Particle Swarm Optimization (IPSO). The model is 
designed to analyze cutting force, vibration, and acoustic emission signals, which are key indicators of 
tool wear in manufacturing. The use of bidirectional LSTMs allows model to capture both past and 
future temporal dependencies, improving prediction accuracy. Integration of CNNs helps model Learns 
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useful patterns directly from raw data, reducing  reliance on manually crafted feature. IPSO  applied to 
optimize model parameters, ensuring that the prediction is as accurate as possible. The study 
demonstrates that this hybrid model outperforms traditional machine learning approaches in terms of 
prediction precision. Results show that model can effectively predict tool wear, leading to optimized 
maintenance schedules and reduced downtime [9].   

The system focuses on using deep learning, specifically CNNs, for detecting and classifying surface 
defects in steel products. The authors demonstrate how CNNs can automatically detect various types of 
defects, including scratches, pits, and cracks, which are commonly found during the manufacturing 
process. Model is trained on large dataset of steel surface images, where it learns  distinguish between 
defective and non-defective regions. One  key challenges addressed in the study is  variance in defect 
types and sizes, which makes traditional methods less effective. The authors use a data augmentation 
technique to improve model’s ability to generalize, thereby enhancing its robustness to different defect 
patterns. Results show that  DL approach achieves high accuracy, significantly reducing time and labor 
required for manual inspection. Model is evaluated on real-world data, demonstrating its feasibility for 
industrial applications. The paper discusses the potential for integrating the model into automated 
quality control systems, offering a promising solution for improving manufacturing efficiency [10].   

This explores the evolution of object detection techniques, focusing on the integration of CNNs and 
Vision Transformers (ViTs). The authors provide a comprehensive overview of the history and 
development of CNNs, highlighting their significant impact on object detection tasks. They then discuss 
the emergence of Vision Transformers, which have demonstrated superior performance in several 
domains. The paper compares CNNs and ViTs in terms of architecture, efficiency, and accuracy, 
explaining why ViTs are gaining popularity. One of the key points discussed is the ability of ViTs to 
capture global contextual information, which gives them an edge in complex detection scenarios [11].    

This paper proposes an intrusion detection system for IoT networks, integrating CNN-LSTM networks 
with statistical filtering techniques. The CNNs are used to extract relevant features from IoT traffic 
data, while LSTM network captures temporal dependencies in  sequence of network activities. The 
statistical filtering technique helps in reducing false alarms by filtering out irrelevant data and focusing 
on critical events. The model is evaluated on dataset of IoT traffic and demonstrates superior 
performance in detecting both known and unknown intrusion patterns. The hybrid CNN-LSTM 
approach is shown to provide higher accuracy than traditional ML models.Authors highlight the 
importance of temporal analysis in intrusion detection, especially in IoT environments where the data 
streams are continuous and dynamic. The paper discusses the challenges of real-time intrusion detection 
and the need for efficient processing techniques. The model is designed to be scalable, making it suitable 
for large IoT networks. In conclusion, the paper suggests that combining deep learning with statistical 
methods can significantly improve accuracy and reliability of intrusion detection systems [12].  

Author presented on the automatic detection and quantification of defects on hot-rolled steel surfaces 
using deep learning. The authors employ CNNs to process high-resolution images of steel surfaces and 
identify defects such as cracks, scale, and pitting. The CNN model is trained to classify defects into 
different categories, providing a robust solution for quality inspection in the steel industry. The paper 
introduces a pixel-level segmentation technique, which enables precise localization and quantification 
of defects. This approach not only detects the presence of defects but also estimates their size and 
severity, offering detailed feedback for quality control. Model evaluated is on large dataset of steel 
surface images, demonstrating its accuracy and reliability. The results show that CNN model 
significantly outperforms traditional image processing techniques in terms of defect detection accuracy. 
Paper discusses  potential for integrating this deep learning approach into industrial production lines, 
where it could operate in real-time [13].  

Faulty gears often produce loud, irregular, and highly non-stationary noise during operation. Severe 
defects such as broken teeth can further damage the entire gear system if not detected early. This work 
introduces a diagnostic approach based on the dual tree complex wavelet transform for identifying gear 
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faults. Acoustic signal from a healthy gear mesh is used as reference for comparison. Experiments were 
performed on gears with one or more teeth containing embedded defects. The method is capable of 
locating the angular positions of multiple damaged teeth with high precision. 

Proposed method is employed for detection performance by means of running simulations. Parameters 
such as like mean, auto correlation, dynamic range, standard deviation, and crest factor are measured. 
Acoustic signals are used for gear fault identification as well as defect severity estimation. It is 
instrumental in the prevention of gear tooth fractures and the motors gear health monitoring  [14].  

Synthetic bevel gear inspection system using a multi camera vision setup has been developed to address 
these challenges. The machine is designed to evaluate gear dimensions and detect surface defects at the 
same time. It employs three environmentally friendly algorithms—NAD, CAM, and FRP—within its 
processing pipeline. The system can identify a wide range of imperfections, including dents, scratches, 
porosity, cracks, impacts, and repeated spline damage. It offers dimensional accuracy in the range of 
40–50 μm, with the smallest detectable defect measuring about 0.4 mm. Each inspection takes only 
around 1.3 seconds, providing sufficient speed and precision for real-time, in-line quality monitoring 
during bevel-gear production. [15] 

In the early stages of equipment degradation, small local micro-fractures can generate distinct magnetic 
flux leakage (MFL) signals, as explained by magnetic dipole–based MFL theory. The characteristics of 
a crack are reflected in the MFL waveform through features such as its height along the tangential 
direction, the peak value of the gradient, and the zero-crossing points around the defect zone. These 
findings form the theoretical foundation for the metal magnetic memory (MMM) method. Using this 
principle, micro-cracks on actual equipment were identified through both dynamic loading tests and 
static measurements. The influence of operational loads on detection accuracy was also examined. 
Results show that the gradient peak in the MFL signal provides a reliable indication of defect presence 
and position, confirming the effectiveness of magnetic memory testing for early fault identification in 
mechanical components. [16]. 

Railway gear is an essential part. The gear's mention of being in a bad state is what safety and quality 
of train travel are mainly affected. Paper proposes an automatic and quantitative method for disordered 
state determination of external tools. A degree method is first introduced for  segmentation of  meshing 
position in  equipment teeth. Then, to identify  floor defects, adaptive threshold, and formative 
evaluation are combined. Strategy for detecting illnesses is overall more efficient than some of the 
related methods [17]. 

Material and methods 

Dataset and key consideration 

Dataset used in this study contains vibration and acoustic signals collected from industrial gearboxes 
operating under varying load and speed conditions. Signals were recorded using high-precision 
accelerometers and microphones at a sampling rate between 12--20 kHz to capture gear mesh 
frequencies and fault-related harmonics. The dataset includes six gear health conditions: healthy gear, 
tooth wear, crack, pitting, broken tooth, and misalignment. Each condition contains multiple time–series 
segments, which were further converted into spectrograms for CNN based spatial feature extraction. 
All samples were labeled according to the corresponding fault type and split into three parts: 70% for 
training, 15% for validation, and 15% for testing. 

 

Publicly available benchmark vibration datasets were also incorporated to increase variability and 
strengthen model robustness. Final dataset provides diverse and representative patterns essential for 
accurate gear defect detection. 
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Signal Processing 

Signal processing is critical step in automated detection and classification of gear defects. It transforms 
raw vibration or acoustic signals into meaningful representations suitable for DL. Process begins with 
segmentation of the time-series data into fixed-length windows to maintain consistency across input 
samples. Noise reduction is then applied using techniques such as low-pass or band-pass filtering to 
eliminate high-frequency noise and unwanted signal components. These steps ensure that only relevant 
frequency and temporal features are retained for analysis. The cleaned signals are then converted into 
2D time-frequency representations like STFT spectrograms or Continuous Wavelet Transforms making 
them suitable for CNN input layers. Normalization is applied to the spectrograms to scale values 
uniformly, which helps the network converge faster and prevents bias toward specific amplitude ranges. 
These preprocessing steps ensure  input data is clean, consistent, highly representative of actual gear 
defect characteristics. 

Data Augmentation 

Data augmentation in gear defect detection aims  improve model robustness and generalization by 
introducing variability into the training data. Given that collecting large-scale vibration datasets in real-
world industrial settings can be challenging, augmentation techniques help simulate diverse operating 
conditions. Common augmentation techniques include: 

 Adding Gaussian noise to simulate sensor variability, 
 Time shifting to account for phase differences, 
 Time stretching or compression to mimic speed variations, 
 Amplitude scaling to simulate signal gain differences, 
 Frequency masking or shifting to alter dominant fault frequencies. 

By generating multiple variations of the same signal or spectrogram, the CNN-LSTM model becomes 
better equipped to identify gear defects under different operating loads, rotational speeds, and noise 
levels—making the system more accurate and reliable in real-time industrial applications. 

 

Proposed System: - 
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Fig 2 Proposed System Architecture 

Hybrid CNN-LSTM model is  powerful DL architecture designed for enhance accuracy of gear defect 
detection by leveraging both spatial and temporal feature learning. In model CNNs are first employed 
to extract essential spatial features from time–frequency representations of vibration or acoustic signals, 
such as spectrograms. These features include harmonic patterns, frequency shifts, amplitude variations, 
and other signatures associated with gear defects such as wear, cracks, pitting, or misalignment. The 
CNN layers—comprising convolutional, activation (ReLU), and pooling layers—automatically learn 
these discriminative patterns while reducing data dimensionality without losing important diagnostic 
information. 

Rescaling Layer 

The model first normalizes the raw images through a rescaling step, converting all pixel values into 
the range [0, 1]. This helps maintain consistency across inputs and improves training stability by 
keeping gradients well-behaved during backpropagation. 

Data Augmentation Layer 

To enhance generalization and reduce overfitting, the images undergo random alterations such as 
contrast changes, flipping, and rotation, zooming, and shifting. These transformations generate 
diverse versions of the original images, enriching the training set. 

First Convolutional Layer 

This layer applies 32 filters  size 3×3 with same padding to learn basic visual cues, such as edges and 
simple shapes. ReLU activation introduces non linearity, enabling  model to capture more complex 
patterns. 
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First Max-Pooling Layer 

A 2×2 max-pooling operation reduces spatial dimensions of  feature maps, retaining only  most 
relevant details. This step lowers computational demand while preserving dominant features. 

Second Convolutional Layer 

Using 64 filters of size 3×3, this layer identifies more detailed and deeper visual patterns based on the 
representations extracted earlier. ReLU activation is again applied to support non-linear feature 
learning. 

Second Max-Pooling Layer 

Another 2×2 pooling layer further compresses the feature maps, highlighting essential information 
and reducing redundancy. 

Third Convolutional Layer 

With 128 filters, this layer expands feature depth and extracts higher-level characteristics such as 
texture, shape variations, and other complex structures. It plays a crucial role in advanced feature 
abstraction. 

Third Max-Pooling Layer 

This pooling step continues to downsample the feature maps, shrinking dimensionality while keeping 
the most influential visual patterns. This helps prepare the data for sequence-based processing. 

Reshape Layer 

Output of final pooling layer is reshaped into sequence-like format, converting 2D feature maps into 
3D structures suitable for input into the LSTM. This transformation creates a temporal interpretation 
of the spatial information. 

LSTM Layer 

 LSTM layer with 128 units learns relationships across the sequentially arranged feature data. It 
captures long-range dependencies and helps the model identify fault patterns that span different 
regions of  image. 

Fully Connected Dense Layers 

The LSTM output is fed into two dense layers 512 and 256 neurons, each followed by  dropout rate of 
50%. These layers refine the learned representation and aid in forming stronger classification 
boundaries. 

Output Layer 

The final softmax layer produces probability scores for each fault category. It converts  extracted 
features into  predicted class, indicating  most likely gear-fault type present in the input image. 

                                                      Table 2 Hyper Parameter sets 
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Hyperparameter Value 

Input Size (224, 224, 3) 

Conv Filters [16, 32, 64] 

Kernel Size (3, 3) 

Activation ReLU 

Pooling Size (2, 2) 

Dropout Rate 0.5 

Dense Units 128 

LSTM Units 64 

Loss Function categorical_crossentropy 

Optimizer Adam (learning_rate=0.001) 

 

1. Rescaling Layer 

Equation: 

x_normalized = x / 255………………………………………………………….eq (1) 

Purpose: Normalizes  pixel values to a range [0, 1], making  model training more stable and faster. 

 

2. Convolutional Layer 

Equation: 

F(i, j) = Σ Σ K(m, n) · I(i + m, j + n)…………………………………………..eq(2) 

Purpose: Applies a kernel K over input image I to extract spatial features like edges and textures. 

3. ReLU Activation 

Equation: 

ReLU(x) = max(0, x) ……………………………………………………………eq(3) 

Purpose: Introduces non linearity in model, allowing it  learn complex patterns. 

4. Max Pooling Layer 

Equation: 

P(i, j) = max{x ∈ pool(i, j)}…………………………………………………….eq(4) 

Purpose: Down samples feature map by selecting  maximum value in each pool window, reducing 
dimensionality. 

5. Flatten Layer 

Equation: 

Flatten: R^{h×w×d} → R^{h·w·d}……………………………………………….eq(5) 

Purpose: Converts multi-dimensional output to one-dimensional vector for input into dense layers. 

6. Dense (Fully Connected) Layer 
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Equation: 

y = f(Wx + b) ……………………………………………………………………eq(6) 

Purpose: Combines all input features to produce the final prediction. f is typically ReLU or Softmax. 

7. LSTM Layer (with gates) 

Equation: 

Forget Gate:     ft = σ(Wf · [ht-1, xt] + bf) 

Input Gate:      it = σ(Wi · [ht-1, xt] + bi) 

Candidate Cell:  C~t = tanh(WC · [ht-1, xt] + bC) 

Cell Update:     Ct = ft * Ct-1 + it * C~t 

Output Gate:     ot = σ(Wo · [ht-1, xt] + bo) 

 

Hidden State:    ht = ot * tanh(Ct) 

Purpose: LSTM layer learns time based patterns. Each gate controls what information to keep or discard. 

 

8. Softmax Output Layer 

Equation: 

Softmax (zi) = e^{zi} / Σ e^{zj}………………………………………………….eq(7) 

Purpose: Converts final outputs into probabilities for multi-class classification tasks. 

Mathematical Formulation 

Gear defect detection begins with a vibration or acoustic signal�(�), which is divided into fixed-

length segments��, ��, … , ��. Each segment is transformed into a timefrequency representation using 
STFT: 

��(�, �) = |STFT{��(�)}|
�, 

Producing a spectrogram used as the CNN input. The CNN extracts spatial feature vectors 

�� = ����(��), 

Which are then fed sequentially into LSTM to model temporal dependencies: 

�� = LSTM(��, ����). 

The final hidden state �� is passed to a softmax classifier to estimate fault probabilities: 

Gear defect detection starts by dividing the raw vibration signal s(t)s(t) into smaller segments, each of 
which is converted into a spectrogram using the STFT for capture important frequency patterns. A CNN 
extracts spatial features from each spectrogram, while an LSTM processes these features over time to 
learn how vibration patterns evolve as gear faults develop. The final LSTM output is passed through a 
softmax classifier to predict the type of gear defect, and model trained by minimizing cross entropy loss 
between predicted and actual labels. 
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Result and Discussion 

Architecture illustrated in Fig. 3 represents  hybrid CNN LSTM model designed for gear defect 
detection tasks. It begins with the input layer, where each vibration or acoustic signal segment in a 
sequence (denoted as x₁, x₂... xₙ) is individually passed into the model. These segments may represent 
different time windows of the machine's operation. Each segment is first converted into a time-
frequency representation (such as a spectrogram), which is then processed through a Convolutional 
Neural Network (CNN) block. This block extracts high level spatial features from spectrogram, like 
frequency patterns, harmonics,anomaly signatures indicative of specific gear defects (e.g., wear, cracks, 
or misalignment).The extracted feature maps are then fed into LSTM block, which processes  features 
sequentially and captures temporal dependencies across the signal segments. This is crucial in gear 
defect detection, as faults often manifest through evolving patterns over time. The output layer utilizes 
the learned spatial-temporal representations to classify each input sequence or signal segment into 
predefined defect categories (y₁, y₂, ..., yₙ). This hybrid CNN-LSTM architecture effectively combines 
spatial feature learning capabilities of CNNs with sequence modeling strength of LSTMs, resulting in 
an accurate and robust framework for real time gear condition monitoring and fault diagnosis. 

 

  Fig 3 CNN-LSTM Architecture 

Confusion matrix is table used evaluate performance of classification model. It shows how well  model's 
predictions match the actual labels. 

1. Precision 

Precision is how many of predicted positive cases were actually correct. 

Formula: 

Precision = TP / (TP + FP) 

High precision means fewer false positives. 

 

2. Recall  

Recall tells us how many of actual positive cases were correctly predicted. 

Formula: 

Recall = TP / (TP + FN) 

High recall means fewer false negatives. 
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3. F1 Score 

F1 Score is harmonic mean of precision and recall — it balances two. 

Formula: 

F1 Score = 2 * (Precision * Recall) / (Precision + Recall) 

 

Especially useful when need a balance between precision and recall, and class distribution is uneven. 

4. Support 

 

Support is number  actual occurrences of class  dataset. 

Formula: 

Support = TP + FN 

It is not  performance metric but gives context  the precision, recall, F1 score. 

 

 

 

CNN Model Training VS Validation Accuracy 

 

Fig 4 CNN Training VS Validation Accuracy, Loss 

 

LSTM Model Training VS Validation Accuracy 
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Fig 5.  LSTM Training Accuracy  Loss 

 

CNN- LSTM Hybrid Model Accuracy VS Loss 

 

 

Fig 6 CNN-LSTM Training Accuracy, Loss 

 

 

Gear Defect Detection 
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                                                         Fig 7 Prediction of Disease 

 

 

 

                                            Table 3 Performance analysis of CNN, LSTM, CNN-LSTM 

Algorithm Training Accuracy 

CNN 0.80 

LSTM 0.90 

CNN-LSTM 0.92 
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                                                       Fig 8 Performance Evaluation 

 

                                                       Table 4 Evaluation metrics 

Algorithm Precision Recall F1 Score Support 

CNN 0.78 0.76 0.77 150 

LSTM 0.88 0.89 0.88 150 

CNN-LSTM 0.91 0.92 0.91 150 
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                                                       Fig. 9 Bar Chart of comparsion 

 

Conclusion 

This study presents hybrid DL framework for gear defect detection, integrating CN) with LSTM 
networks. CNN component excels at extracting spatial features from time frequency representations of 
vibration or acoustic signals, while LSTM component captures temporal dependencies, which are 
critical in understanding the progression and evolution of gear faults. The hybrid model effectively 
classifies various gear defects such as tooth wear, cracks, pitting, and misalignment with high accuracy 
and consistency. Confusion matrix analysis confirms model's capability differentiate between fault 
types with minimal misclassification. This intelligent diagnostic system offers significant benefits for 
predictive maintenance by enabling early fault detection and improving operational reliability. Looking 
ahead, model can be integrated into real-time monitoring systems on industrial machines using edge 
devices or IoT platforms. Further enhancements may include training on broader datasets, incorporating 
multisensor fusion, or adapting to other rotating machinery faults for broader applicability in industrial 
health monitoring. 
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