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Abstract: -

Gear assemblies are essential components in many industrial machines, and even minor defects can
lead to unplanned shutdowns, financial losses, and possible safety concerns. Detecting faults at an early
stage is therefore crucial for predictive maintenance. This study introduces a hybrid deep learning model
that combines Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) units
to automatically diagnose gear faults using vibration data. In this method, the collected vibration signals
are first transformed into spectrograms so that important frequency-based information becomes more
visible. The CNN layers learn spatial features from these spectrograms, while the LSTM layers capture
the time-dependent patterns that reflect different gear conditions. By integrating these two architectures,
the proposed system delivers more reliable and accurate fault detection than traditional machine
learning approaches or standalone CNN/LSTM models. Tests conducted on a standard gear-fault
dataset—including conditions like gear cracks, tooth wear, and broken teeth—show that the hybrid
CNN-LSTM framework provides superior accuracy and greater robustness. This makes it a strong
candidate for real-time, automated monitoring of gear health in industrial settings.

Keywords: Gear Defect Detection, CNN-LSTM Hybrid Model, Condition Monitoring, Vibration
Analysis, Deep Learning, Predictive Maintenance, Fault Diagnosis, Time-Frequency Analysis,
Spectrogram, Industrial Automation.

1. Introduction

Gears are essential elements in many mechanical applications, ranging from vehicle
transmission systems to heavy industrial equipment. Their main function is to transfer motion
and power smoothly and efficiently. Because they operate continuously under varying loads,
gears often develop faults such as wear, cracking, pitting, or tooth breakage. If these issues are
not identified in time, they can cause serious failures, unexpected shutdowns, and high
maintenance expenses. This makes early and precise fault detection extremely important for
maintaining reliability, safety, and overall performance of mechanical systems.Conventional
approaches to gear fault diagnosis depend largely on manual inspection, handcrafted feature
extraction, and traditional signal-processing methods. These techniques are labor-intensive,
require considerable expertise, and usually do not adapt well to changing operating conditions.
With the rapid progress in Al and DL, automated fault detection has become a strong alternative
because it can learn complex patterns directly from raw or lightly processed vibration
data.CNNs have shown exceptional capability in extracting spatial information from images
and spectrograms produced from vibration signals. However, they are not ideal for capturing
the temporal relationships in time-series data. In contrast, recurrent neural networks, especially
LSTM models, are effective at learning sequential dependencies but may not efficiently
represent localized spatial details.To address these limitations, the present study introduces a
hybrid DL model that integrates both CNN and LSTM architectures. In this framework,
vibration signals collected from gear systems are converted into spectrograms using time—
frequency analysis. The CNN layers extract key spatial characteristics from these
spectrograms, while the LSTM layers learn the temporal behavior associated with different
gear conditions. Combining strengths of both models, the hybrid CNN LSTM approach
enhances accuracy and improves robustness in classifying various gear defects.The model is
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tested on standard gear-fault datasets containing several defect types under diverse operating
conditions. Experimental findings indicate that the CNN—LSTM hybrid system performs better
than traditional ML methods and individual DL models, making it a strong candidate for real
time gear health monitoring in industrial settings.Table 1 summarizes conventional techniques

along with their limitations.

Tablel Traditional Techniques Used for gear defect detection and Limitation

Sr. No. | Traditional Application in Gear Defect | Limitations of Technique
Technique Used Detection
1 Visual Inspection Detecting surface defects | Subjective, labor-intensive, not
like cracks, pitting, and | reliable for internal defects, prone
wear to human error
2 Vibration  Analysis | Monitoring gear mesh | Requires manual feature
(Classical FFT) frequency changes | extraction, limited sensitivity to
indicating defects early-stage faults
3 Acoustic  Emission | Identifying crack initiation | Sensitive to noise, complex signal
Analysis and material deformation in | interpretation, requires expertise
gears
4 Oil Debris Analysis | Detecting wear by | Cannot pinpoint defect location or
analyzing metal particles in | type, indirect indication only
lubricants
5 Thermography Detecting temperature | Affected by ambient conditions,
changes due to friction from | low resolution, unsuitable for
gear misalignment/wear internal defect identification
6 MPI Detecting surface and near | Not suitable for non-
surface cracks in | ferromagnetic materials, time-
ferromagnetic gears consuming, requires gear
disassembly
7 Ultrasonic Testing Locating internal flaws and | Requires skilled operator, not
cracks in gears effective on complex geometries,
slow for high-volume testing
8 Strain Gauge | Monitoring gear load and | Requires physical sensor
Analysis deformation behavior under | attachment, affected by noise, not
stress ideal for real-time fault detection

Fig. 1. Images captured across various defects
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The key contribution of the work as follows

» Development of a hybrid CNN-LSTM model specifically designed for gear defect detection
using vibration and acoustic data.

» Transformation of raw signal data into spectrograms for effective spatial and temporal feature
extraction.

» Construction and preprocessing of a comprehensive gear fault dataset to train and evaluate the
model under varying defect conditions.

» Extensive performance evaluation comparing hybrid model with standalone CNN and LSTM
architectures to highlight its improved accuracy and robustness.

» Demonstration of model’s feasibility for real time, automated fault detection in industrial gear
systems, contributing to predictive maintenance and reduced downtime.

This research bridges gap between traditional fault diagnosis techniques and modern DL approaches,
advancing field of intelligent condition monitoring in mechanical systems.

Literature Survey

Paper introduces a DL framework for the identification and classification of surface defects, using
CNNs. Important feature of research is creation of artificial data by means of GANs to enlarge the
training datasets, thus improving accuracy of the model in case of scarce real-world data.The method
addresses challenges in surface defect detection in manufacturing processes, where defects can be subtle
and varied. The CNN model is trained on both real and synthetic images, significantly improving its
ability to classify and detect surface anomalies. The paper presents a thorough evaluation of the model,
comparing it against traditional defect detection methods. It suggests that this approach is highly
scalable and can be integrated into automated quality control systems. The findings offer valuable
insights into use of DL for industrial applications. Finally, the study concludes with recommendations
on future research directions, including improving synthetic data quality [7].

This author discusses applying CNN and LSTM networks to predict melt pool temperatures during wire
arc additive manufacturing (WAAM). The approach combines CNNs feature extraction and LSTMs for
temporal prediction, making it suitable for dynamic processes. The CNN is responsible for capturing
spatial patterns from images, while LSTM captures temporal dependencies in data. Model successfully
predicts thermal behavior, which is critical for optimizing the additive manufacturing process. The
authors show that this hybrid deep learning approach outperforms traditional methods for terms of
accuracy. Their results demonstrate that ML can enhance precision of temperature predictions, leading
to better control over the WAAM process. The paper highlights the importance of real-time prediction
for improving the quality of printed parts. Furthermore, authors discuss potential for integrating this
model into an industrial setting for automated quality control. The paper concludes that combining
CNNs and LSTMs offers significant advantages over single-model approaches in complex
manufacturing tasks. Future work on optimizing model further and incorporating additional features for
improved predictions [8].

This paper author presents a tool wear prediction model based on combination of CNNs and
bidirectional LSTMs, enhanced by Improved Particle Swarm Optimization (IPSO). The model is
designed to analyze cutting force, vibration, and acoustic emission signals, which are key indicators of
tool wear in manufacturing. The use of bidirectional LSTMs allows model to capture both past and
future temporal dependencies, improving prediction accuracy. Integration of CNNs helps model Learns
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useful patterns directly from raw data, reducing reliance on manually crafted feature. IPSO applied to
optimize model parameters, ensuring that the prediction is as accurate as possible. The study
demonstrates that this hybrid model outperforms traditional machine learning approaches in terms of
prediction precision. Results show that model can effectively predict tool wear, leading to optimized
maintenance schedules and reduced downtime [9].

The system focuses on using deep learning, specifically CNNs, for detecting and classifying surface
defects in steel products. The authors demonstrate how CNNs can automatically detect various types of
defects, including scratches, pits, and cracks, which are commonly found during the manufacturing
process. Model is trained on large dataset of steel surface images, where it learns distinguish between
defective and non-defective regions. One key challenges addressed in the study is variance in defect
types and sizes, which makes traditional methods less effective. The authors use a data augmentation
technique to improve model’s ability to generalize, thereby enhancing its robustness to different defect
patterns. Results show that DL approach achieves high accuracy, significantly reducing time and labor
required for manual inspection. Model is evaluated on real-world data, demonstrating its feasibility for
industrial applications. The paper discusses the potential for integrating the model into automated
quality control systems, offering a promising solution for improving manufacturing efficiency [10].

This explores the evolution of object detection techniques, focusing on the integration of CNNs and
Vision Transformers (ViTs). The authors provide a comprehensive overview of the history and
development of CNNs, highlighting their significant impact on object detection tasks. They then discuss
the emergence of Vision Transformers, which have demonstrated superior performance in several
domains. The paper compares CNNs and ViTs in terms of architecture, efficiency, and accuracy,
explaining why ViTs are gaining popularity. One of the key points discussed is the ability of ViTs to
capture global contextual information, which gives them an edge in complex detection scenarios [11].

This paper proposes an intrusion detection system for IoT networks, integrating CNN-LSTM networks
with statistical filtering techniques. The CNNs are used to extract relevant features from IoT traffic
data, while LSTM network captures temporal dependencies in sequence of network activities. The
statistical filtering technique helps in reducing false alarms by filtering out irrelevant data and focusing
on critical events. The model is evaluated on dataset of IoT traffic and demonstrates superior
performance in detecting both known and unknown intrusion patterns. The hybrid CNN-LSTM
approach is shown to provide higher accuracy than traditional ML models.Authors highlight the
importance of temporal analysis in intrusion detection, especially in IoT environments where the data
streams are continuous and dynamic. The paper discusses the challenges of real-time intrusion detection
and the need for efficient processing techniques. The model is designed to be scalable, making it suitable
for large IoT networks. In conclusion, the paper suggests that combining deep learning with statistical
methods can significantly improve accuracy and reliability of intrusion detection systems [12].

Author presented on the automatic detection and quantification of defects on hot-rolled steel surfaces
using deep learning. The authors employ CNNs to process high-resolution images of steel surfaces and
identify defects such as cracks, scale, and pitting. The CNN model is trained to classify defects into
different categories, providing a robust solution for quality inspection in the steel industry. The paper
introduces a pixel-level segmentation technique, which enables precise localization and quantification
of defects. This approach not only detects the presence of defects but also estimates their size and
severity, offering detailed feedback for quality control. Model evaluated is on large dataset of steel
surface images, demonstrating its accuracy and reliability. The results show that CNN model
significantly outperforms traditional image processing techniques in terms of defect detection accuracy.
Paper discusses potential for integrating this deep learning approach into industrial production lines,
where it could operate in real-time [13].

Faulty gears often produce loud, irregular, and highly non-stationary noise during operation. Severe
defects such as broken teeth can further damage the entire gear system if not detected early. This work
introduces a diagnostic approach based on the dual tree complex wavelet transform for identifying gear
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faults. Acoustic signal from a healthy gear mesh is used as reference for comparison. Experiments were
performed on gears with one or more teeth containing embedded defects. The method is capable of
locating the angular positions of multiple damaged teeth with high precision.

Proposed method is employed for detection performance by means of running simulations. Parameters
such as like mean, auto correlation, dynamic range, standard deviation, and crest factor are measured.
Acoustic signals are used for gear fault identification as well as defect severity estimation. It is
instrumental in the prevention of gear tooth fractures and the motors gear health monitoring [14].

Synthetic bevel gear inspection system using a multi camera vision setup has been developed to address
these challenges. The machine is designed to evaluate gear dimensions and detect surface defects at the
same time. It employs three environmentally friendly algorithms—NAD, CAM, and FRP—within its
processing pipeline. The system can identify a wide range of imperfections, including dents, scratches,
porosity, cracks, impacts, and repeated spline damage. It offers dimensional accuracy in the range of
40-50 um, with the smallest detectable defect measuring about 0.4 mm. Each inspection takes only
around 1.3 seconds, providing sufficient speed and precision for real-time, in-line quality monitoring
during bevel-gear production. [15]

In the early stages of equipment degradation, small local micro-fractures can generate distinct magnetic
flux leakage (MFL) signals, as explained by magnetic dipole—based MFL theory. The characteristics of
a crack are reflected in the MFL waveform through features such as its height along the tangential
direction, the peak value of the gradient, and the zero-crossing points around the defect zone. These
findings form the theoretical foundation for the metal magnetic memory (MMM) method. Using this
principle, micro-cracks on actual equipment were identified through both dynamic loading tests and
static measurements. The influence of operational loads on detection accuracy was also examined.
Results show that the gradient peak in the MFL signal provides a reliable indication of defect presence
and position, confirming the effectiveness of magnetic memory testing for early fault identification in
mechanical components. [16].

Railway gear is an essential part. The gear's mention of being in a bad state is what safety and quality
of train travel are mainly affected. Paper proposes an automatic and quantitative method for disordered
state determination of external tools. A degree method is first introduced for segmentation of meshing
position in equipment teeth. Then, to identify floor defects, adaptive threshold, and formative
evaluation are combined. Strategy for detecting illnesses is overall more efficient than some of the
related methods [17].

Material and methods
Dataset and key consideration

Dataset used in this study contains vibration and acoustic signals collected from industrial gearboxes
operating under varying load and speed conditions. Signals were recorded using high-precision
accelerometers and microphones at a sampling rate between 12--20 kHz to capture gear mesh
frequencies and fault-related harmonics. The dataset includes six gear health conditions: healthy gear,
tooth wear, crack, pitting, broken tooth, and misalignment. Each condition contains multiple time—series
segments, which were further converted into spectrograms for CNN based spatial feature extraction.
All samples were labeled according to the corresponding fault type and split into three parts: 70% for
training, 15% for validation, and 15% for testing.

Publicly available benchmark vibration datasets were also incorporated to increase variability and
strengthen model robustness. Final dataset provides diverse and representative patterns essential for
accurate gear defect detection.
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Signal Processing

Signal processing is critical step in automated detection and classification of gear defects. It transforms
raw vibration or acoustic signals into meaningful representations suitable for DL. Process begins with
segmentation of the time-series data into fixed-length windows to maintain consistency across input
samples. Noise reduction is then applied using techniques such as low-pass or band-pass filtering to
eliminate high-frequency noise and unwanted signal components. These steps ensure that only relevant
frequency and temporal features are retained for analysis. The cleaned signals are then converted into
2D time-frequency representations like STFT spectrograms or Continuous Wavelet Transforms making
them suitable for CNN input layers. Normalization is applied to the spectrograms to scale values
uniformly, which helps the network converge faster and prevents bias toward specific amplitude ranges.
These preprocessing steps ensure input data is clean, consistent, highly representative of actual gear
defect characteristics.

Data Augmentation

Data augmentation in gear defect detection aims improve model robustness and generalization by
introducing variability into the training data. Given that collecting large-scale vibration datasets in real-
world industrial settings can be challenging, augmentation techniques help simulate diverse operating
conditions. Common augmentation techniques include:

¢ Adding Gaussian noise to simulate sensor variability,

e Time shifting to account for phase differences,

¢ Time stretching or compression to mimic speed variations,

e Amplitude scaling to simulate signal gain differences,

¢ Frequency masking or shifting to alter dominant fault frequencies.

By generating multiple variations of the same signal or spectrogram, the CNN-LSTM model becomes
better equipped to identify gear defects under different operating loads, rotational speeds, and noise
levels—making the system more accurate and reliable in real-time industrial applications.

Proposed System: -
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Fig 2 Proposed System Architecture

Hybrid CNN-LSTM model is powerful DL architecture designed for enhance accuracy of gear defect
detection by leveraging both spatial and temporal feature learning. In model CNNs are first employed
to extract essential spatial features from time—frequency representations of vibration or acoustic signals,
such as spectrograms. These features include harmonic patterns, frequency shifts, amplitude variations,
and other signatures associated with gear defects such as wear, cracks, pitting, or misalignment. The
CNN layers—comprising convolutional, activation (ReLU), and pooling layers—automatically learn
these discriminative patterns while reducing data dimensionality without losing important diagnostic
information.

Rescaling Layer

The model first normalizes the raw images through a rescaling step, converting all pixel values into
the range [0, 1]. This helps maintain consistency across inputs and improves training stability by
keeping gradients well-behaved during backpropagation.

Data Augmentation Layer

To enhance generalization and reduce overfitting, the images undergo random alterations such as
contrast changes, flipping, and rotation, zooming, and shifting. These transformations generate
diverse versions of the original images, enriching the training set.

First Convolutional Layer

This layer applies 32 filters size 3x3 with same padding to learn basic visual cues, such as edges and

simple shapes. ReLU activation introduces non linearity, enabling model to capture more complex
patterns.

PAGE NO : 83



Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 12

First Max-Pooling Layer

A 2x2 max-pooling operation reduces spatial dimensions of feature maps, retaining only most
relevant details. This step lowers computational demand while preserving dominant features.

Second Convolutional Layer

Using 64 filters of size 3%3, this layer identifies more detailed and deeper visual patterns based on the
representations extracted earlier. ReLU activation is again applied to support non-linear feature
learning.

Second Max-Pooling Layer

Another 2x2 pooling layer further compresses the feature maps, highlighting essential information
and reducing redundancy.

Third Convolutional Layer

With 128 filters, this layer expands feature depth and extracts higher-level characteristics such as
texture, shape variations, and other complex structures. It plays a crucial role in advanced feature
abstraction.

Third Max-Pooling Layer

This pooling step continues to downsample the feature maps, shrinking dimensionality while keeping
the most influential visual patterns. This helps prepare the data for sequence-based processing.

Reshape Layer

Output of final pooling layer is reshaped into sequence-like format, converting 2D feature maps into
3D structures suitable for input into the LSTM. This transformation creates a temporal interpretation
of the spatial information.

LSTM Layer

LSTM layer with 128 units learns relationships across the sequentially arranged feature data. It
captures long-range dependencies and helps the model identify fault patterns that span different
regions of image.

Fully Connected Dense Layers

The LSTM output is fed into two dense layers 512 and 256 neurons, each followed by dropout rate of
50%. These layers refine the learned representation and aid in forming stronger classification
boundaries.

Output Layer

The final softmax layer produces probability scores for each fault category. It converts extracted
features into predicted class, indicating most likely gear-fault type present in the input image.

Table 2 Hyper Parameter sets

PAGE NO : 84



Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 12

Hyperparameter Value
Input Size (224,224, 3)
Conv Filters [16, 32, 64]
Kernel Size (3.3
Activation ReLU
Pooling Size 2,2)
Dropout Rate 0.5
Dense Units 128
LSTM Units 64
Loss Function categorical crossentropy
Optimizer Adam (learning_rate=0.001)
1. Rescaling Layer
Equation:
X normalized = X / 255 .. i eq (1)

Purpose: Normalizes pixel values to a range [0, 1], making model training more stable and faster.

2. Convolutional Layer
Equation:
FG,)=Z2X2K@m,n) - 10 +m,j+n)...ccceieiiiiiiiiiiiiiiiieee e eq(2)

Purpose: Applies a kernel K over input image I to extract spatial features like edges and textures.

3. ReLU Activation
Equation:
RELU(X) =max(0, X) oottt et et e e e e e eq(3)

Purpose: Introduces non linearity in model, allowing it learn complex patterns.
4. Max Pooling Layer
Equation:

P(1, 1) = max{X € POOI(L, J) . eurenrenrieiit i eq(4)

Purpose: Down samples feature map by selecting maximum value in each pool window, reducing
dimensionality.

5. Flatten Layer

Equation:

Flatten: RMhxwxd} — RMh-w-d} ..o, eq(5)

Purpose: Converts multi-dimensional output to one-dimensional vector for input into dense layers.

6. Dense (Fully Connected) Layer
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Equation:

D (1170 5 2l +) T P eq(6)

Purpose: Combines all input features to produce the final prediction. fis typically ReLU or Softmax.
7. LSTM Layer (with gates)

Equation:

Forget Gate:  ft = o(WTf - [ht-1, xt] + bf)

Input Gate:  it=o(Wi - [ht-1, xt] + bi)

Candidate Cell: C~t=tanh(WC - [ht-1, xt] + bC)

Cell Update: Ct=ft* Ct-1+it* C~t

Output Gate: ot =c(Wo - [ht-1, xt] + bo)

Hidden State: ht = ot * tanh(Ct)

Purpose: LSTM layer learns time based patterns. Each gate controls what information to keep or discard.

8. Softmax Output Layer

Equation:

Softmax (zi) = €™M {Zi} / X €™M {Z) } orrei i eq(7)
Purpose: Converts final outputs into probabilities for multi-class classification tasks.
Mathematical Formulation

Gear defect detection begins with a vibration or acoustic signals(t), which is divided into fixed-
length segmentsxy, x5, ..., X,,. Each segment is transformed into a timefrequency representation using
STFT:

Si(r, f) = ISTFT{x;(0)}I%,
Producing a spectrogram used as the CNN input. The CNN extracts spatial feature vectors
z; = penn(Si),
Which are then fed sequentially into LSTM to model temporal dependencies:
h; = LSTM(z;, h;_,).
The final hidden state h,, is passed to a softmax classifier to estimate fault probabilities:

Gear defect detection starts by dividing the raw vibration signal s(t)s(¢) into smaller segments, each of
which is converted into a spectrogram using the STFT for capture important frequency patterns. A CNN
extracts spatial features from each spectrogram, while an LSTM processes these features over time to
learn how vibration patterns evolve as gear faults develop. The final LSTM output is passed through a
softmax classifier to predict the type of gear defect, and model trained by minimizing cross entropy loss
between predicted and actual labels.
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Result and Discussion

Architecture illustrated in Fig. 3 represents hybrid CNN LSTM model designed for gear defect
detection tasks. It begins with the input layer, where each vibration or acoustic signal segment in a
sequence (denoted as x;, xz... x,) is individually passed into the model. These segments may represent
different time windows of the machine's operation. Each segment is first converted into a time-
frequency representation (such as a spectrogram), which is then processed through a Convolutional
Neural Network (CNN) block. This block extracts high level spatial features from spectrogram, like
frequency patterns, harmonics,anomaly signatures indicative of specific gear defects (e.g., wear, cracks,
or misalignment).The extracted feature maps are then fed into LSTM block, which processes features
sequentially and captures temporal dependencies across the signal segments. This is crucial in gear
defect detection, as faults often manifest through evolving patterns over time. The output layer utilizes
the learned spatial-temporal representations to classify each input sequence or signal segment into
predefined defect categories (i, yz, ..., ¥»). This hybrid CNN-LSTM architecture effectively combines
spatial feature learning capabilities of CNNs with sequence modeling strength of LSTMs, resulting in
an accurate and robust framework for real time gear condition monitoring and fault diagnosis.

Input Visual Sequence Output

Layer Features Learning Layer
- ————y T T T e = ey - - = =
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1 1 1 ' 1 1 H
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Fig 3 CNN-LSTM Architecture

Confusion matrix is table used evaluate performance of classification model. It shows how well model's
predictions match the actual labels.

1. Precision

Precision is how many of predicted positive cases were actually correct.
Formula:

Precision =TP / (TP + FP)

High precision means fewer false positives.

2. Recall

Recall tells us how many of actual positive cases were correctly predicted.
Formula:

Recall = TP/ (TP + FN)

High recall means fewer false negatives.
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3. F1 Score
F1 Score is harmonic mean of precision and recall — it balances two.
Formula:

F1 Score = 2 * (Precision * Recall) / (Precision + Recall)

Especially useful when need a balance between precision and recall, and class distribution is uneven.

4. Support

Support is number actual occurrences of class dataset.
Formula:
Support = TP + FN

It is not performance metric but gives context the precision, recall, F1 score.

CNN Model Training VS Validation Accuracy

Training and Validation Accuracy Training and Validation Loss
ia Training Loss
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Fig 4 CNN Training VS Validation Accuracy, Loss

LSTM Model Training VS Validation Accuracy
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Fig 5. LSTM Training Accuracy Loss

CNN- LSTM Hybrid Model Accuracy VS Loss
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Fig 6 CNN-LSTM Training Accuracy, Loss
Gear Defect Detection
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Table 3 Performance analysis of CNN, LSTM, CNN-LSTM

Algorithm Training Accuracy
CNN 0.80
LST™M 0.90
CNN-LSTM 0.92
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Performance Evaluation
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Fig 8 Performance Evaluation
Table 4 Evaluation metrics
Algorithm Precision Recall F1 Score Support
CNN 0.78 0.76 0.77 150
LST™M 0.88 0.89 0.88 150
CNN-LSTM 0.91 0.92 0.91 150
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Fig. 9 Bar Chart of comparsion

Conclusion

This study presents hybrid DL framework for gear defect detection, integrating CN) with LSTM
networks. CNN component excels at extracting spatial features from time frequency representations of
vibration or acoustic signals, while LSTM component captures temporal dependencies, which are
critical in understanding the progression and evolution of gear faults. The hybrid model effectively
classifies various gear defects such as tooth wear, cracks, pitting, and misalignment with high accuracy
and consistency. Confusion matrix analysis confirms model's capability differentiate between fault
types with minimal misclassification. This intelligent diagnostic system offers significant benefits for
predictive maintenance by enabling early fault detection and improving operational reliability. Looking
ahead, model can be integrated into real-time monitoring systems on industrial machines using edge
devices or [oT platforms. Further enhancements may include training on broader datasets, incorporating
multisensor fusion, or adapting to other rotating machinery faults for broader applicability in industrial
health monitoring.
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