Phytochemical Profiling and GC-MS Characterization of Vernonia amygdalina Leaf Extract

V.G.Vidhya*, Amanda Ibe – Enwo, Rahumath Uroosha Ali Babul Hussain, Rucchi Ryan
Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology,
Kattankulathur, Chengalpattu District, Tamil Nadu - 603203, India

Corresponding author

*V.G. VIDHYA

Assistant Professor

Department of Biotechnology

Faculty of Science and Humanities

SRM Institute of Science and Technology

Kattankulathur, Chengalpattu district,

Tamil Nadu – 603 203, India.

Abstract

Vernonia amygdalina, a tropical plant in Africa is consumed as vegetable and possess high medicinal value. Traditionally it is used in the treatment of various ailments. The present investigation was to identify the various phytoconstituents present in this plant by qualitative phytochemical analysis and by using gas chromatography -mass spectrometry. The leaves of v. amygdalina were extracted with methanol at room temperature for 72 hours. The concentrated extract was subjected to GC-MS analysis to detect the phytoconstituents. Totally 79 compounds were identified. This preliminary study gives an idea to isolate the major bioactive compound present in the plant which might be responsible for its therapeutic efficiency.

Keywords: Vernonia amygdalina, GC-MS, Bioactive compound. Phytoconstituents, Bitter leaf

Introduction

Medicinal plants have been used as a source of drugs by millions of people around the world for several years. Yet, demand for many wild plant species is still increasing with human needs and as these quickly heal the symptoms of illnesses. One among such tropical plant is Vernonia amygdalina. V. amygdalina, is a potent medicinal plant found growing predominantly in tropical Africa. Due to its bitter taste and flavor, it is commonly known as bitter leaf [1]. The plant is widely used as an active anticancer, antibacterial, antimalarial [2-5] and antiparastic agent. [6, 7]. The leaves of V. amygdalina are consumed as green leafy vegetable in regular diet as they serve as excellent appetizer and extract from the leaves aid digestion. [8]. The leaves are also used for breast milk enhancement in nursing mothers [9], treatment of fever in poultry [10] and helminthosis in livestock [11], The roots and twigs of the plant are given for treating wounds [12,13]. It was also reported that V. amygdalina has hypoglycaemic activity as their results reported a close-dependent reduction in fasting blood sugar level in alloxan-induced diabetic rats after treatment with different concentrations of the aqueous leaf extracts [14]. Hence the main purpose of the present study was to identify the phytocompounds in the methanolic leaf extract of *V. amygdalina* by qualitative screening of phytochemicals and to identify each specific compound with their concentrations by Gas Chromatography – Mass Spectrum (GC-MS) analysis [15].

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 11

Materials And Methods

Collection Of Plant Material

Fresh leaves of bitter leaf (V. amygdalina) were collected from Afikpo Ebonyi State, Nigeria and was authenticated by Dr. Kalavathy, Botanist. The leaves were washed thoroughly with water to remove

dust and dried under the shade at room temperature for seven days.

Plant Extract Preparation

The shade dried leaves of *V. amygdalina* were ground using kitchen blender to obtain the course powder and kept in an air tight container till further use. 500 g of the powdered plant material was defatted with petroleum ether (60-80°C) using a soxhlet extractor and then it was successively extracted with methanol for 72 h. The extract obtained was filtered and concentrated under reduced pressure in a rotary evaporator at 180 rpm. The crude extracts thus obtained were used for the phytochemical analysis and GC-

MS analysis to find the bioactive components present in plant leaves.

Phytochemical Screening Of Leaves Extract

The leaf extract of *V. amygdalina* was screened for various phytochemical constituents using standard methods [9-11] as described in Table 1.

Gas Chromatography-Mass Spectrometry Analysis

The crude bioactive methanolic extract of V. amygdalina leaves was subjected to GC-MS analysis. The conditions used for the GC-MS analysis are presented in Table 2. The spectrum of the crude component was compared with the spectrum of the known components in the National Institute Standard and Technology (NIST) library. The molecular weight, name, chemical structure and molecular formula of the

components of the test material were ascertained.

Results And Discussion

The yield of the plant extract was found to be 9.8%.

Phytochemical Screening

The crude extract of *V.amygdalina* obtained by soxhlet extraction was used for the phytochemical screening and GC-MS analysis to identify the phytoconstituents and bioactive components present in plant leaves of *V.amygdalina*. The results of phytochemical analysis (table 3) showed the presence of alkaloids, Cardiac Glycosides, Flavonoids, Saponin, Steroid, Carbohydrates, presence of oil and Fat, phenolic

compounds, tannins and terpenoids. Phlobatannin were absent in the leaf extract.

Gas Chromatography – Mass Spectrometry

One of the most precise method to identify secondary metabolites present in any plant extract is Gas chromatography – mass spectrometry. The crude methanol extract of *V.amygdalina* was subjected to GC-MS to detect various compounds with the help of NIST library. The bioactive compounds present in methanol extract obtained from *V.amygdalina* leaves are shown in Table 4. Totally 79 compounds were identified. The GC chromatograms of the extract presented in Figure 1 shows the retention time in the column and the detected peaks which correspond to the bioactive compounds present in the extract. Their identification and characterization were based on their elution order in a HP-5MS column. The elution time, molecular formula and the amount of these bioactive compounds are also given. The major constituents identified in the extract were dimethyl propanedioate, dimethyl pentanedioate, cis- 9,cis-12-octadecadienoic acid, pentanedioic acid and many other compounds were identified as low level.

Conclusion

From this preliminary study it is observed that the presence of various phytocompounds detected after GC-MS analysis justifies the use of *V. amygdalina* for treatment of various ailments by traditional practitioner. Earlier reports and the present study confirm the identified phytoconstituents to be highly bioactive. Therefore, the anticancer, antibacterial, antimalarial and antiparasitic activity of the plant might be due to the presence of above shown metabolites. Hence, *V. amygdalina* plant could be recommended as a plant of phytopharmaceutical importance and its highest therapeutic efficacy can be explored by pharmaceutical companies in order to develop safe drugs for various ailments. We also have put effort to exploit the biomedical applications of this plant to their full utilization by purifying and characterizing the principle active constituent responsible for its therapeutic efficiency.

References

- 1. Ajibesin K.K., Ekpo B.A., Bala D.N., Essien E.E and Adesanya S.A., Ethnobotanical survey of Akwa Ibom State of Nigeria. *J Ethnopharmacol.*, **115 (3)**, 387-408 **(2008)**.
- 2. Bonsi M.L.K., Osuji P.O. and Umunna A.K.N.N., *Vernonia amygdalina* as a supplement to teff straw (Eragrosis tef.) fed to Ethiopian Menz sheep., *Agroforestry Systems.*, **31** (3), 229–241 (1995).
- 3. Chaudhary R., Tripathi and Astha., Isolation and identification of bioactive compounds from Irpex Lacteus wild fleshy fungi. *Journal of Pharmaceutical Sciences and Research* 7, 424-434 (2015).
- 4. David A Akinpelu. Antimicrobial activity of *Vernonia amygdalina* leaves., *Fitoterapia.*, **70 (4)**, 432-434 **(1999).**
- 5. Ene A.C.and Atawodi S.E., Ethnomedicinal survey of plants used by the Kanuris of North-eastern Nigeria., *Indian Journal of Traditional Knowledge.*, **11 (4)**, 640-645 **(2012)**.
- 6. Erasto P., Grierson D.S and Afolayan A.J., Bioactive sesquiterpene lactones from the leaves of *Vernonia amygdalina*. *J Ethnopharmacol.*, **106 (1)**, 117-20 **(2005)**.

- 7. Immaculate Nabukenya., Chris Rubaire-Akiiki., Deogracious Olila., Kokas Ikwap. and Johan Höglund., Ethnopharmacological practices by livestock farmers in Uganda: Survey experiences from Mpigi and Gulu districts., *J Ethnobiol Ethnomed.*, **10:9**, **(2014)**.
- 8. Kavitha R. and Premalakshmi V., Phytochemical analysis of ethanolic extract of leaves of clitoria ternatea L. *International Journal of Pharma and Bio Sciences.*, **4**, 236-242 **(2013).**
- 9. Kharat S.S., Kumkar P.B., Rajpure S.R., and Sonawane K.S., Qualitative phytochemical screening of Gnidia Glauca (FRESEN) gilg. plant extract. *International Journal of Pharma and Bio Sciences* **4**, 144-148 (**2013**).
- 10. Kiran S.P., Kumari., Sridevi V. and Chandana Lakshmi M.V.V., Studies on Phytochemical screening of aqueous extract collected from fertilizers affected two medicinal plants. *Journal of chemical, Biological and Physical Sciences* **2(3)**, 1326-1332 **(2012)**.
- 11. Krief S., Hladik C.M. and Haxaire C., Ethnomedicinal and bioactive properties of plants ingested by wild chimpanzees in Uganda. *J Ethnopharmacol.*, **3:101(1-3)**, 1-15 **(2005)**.
- 12. Madureira M. do Céu de., Paula Martins A., Gomes M., Paiva J., Proença da Cunha A. and Do Rosário V., Antimalarial activity of medicinal plants used in traditional medicine in S. Tomé and Príncipe islands. *J Ethnopharmacol.*, **81(1)**, 23-9 **(2002)**.
- 13. Nalubega, Rebecca & Kabasa, John & Olila, Deo and Katerega J., A Survey of Indigenous Knowledge on Poultry Ethnomedicinal Plants in Masaka District, Uganda. *Research Journal of Poultry Sciences.*, 5, 18-23 (2012).
- 14. Njan A.A., Adzu B., Agaba A.G., Byarugaba D., Díaz-Llera S. and Bangsberg D.R., The analgesic and antiplasmodial activities and toxicology of *Vernonia amygdalina*. *J Med Food.*, **11 (3)**, 574-81 **(2008)**.
- 15. Nwanjo H.U., Efficacy of aqueous leaf extract of *Vernonia amygdalina* on plasma lipoprotein and oxidative status in diabetic rat models. *Niger J Physiol Sci.*, **20** (1-2), 39-42. (2005).
- 16. Patience Tugumer., Esezah K., Kakudidi., Mukadasi Buyinza., Justine Namaalwa., Maud Kamatenesi., Patrick Mucunguzi. and James Kalema., Ethnobotanical survey of medicinal plant species used by communities around Mabira, Central Forest Reserve, Uganda., *Journal of Ethnobiology and Ethnomedicine.*, 2:5, (2016)
- 17. Sobukola O.P., Dairo O.U., Sanni L.O., Odunewu A.V. and Fafiolu B.O., Thin Layer Drying Process of Some Leafy Vegetables under Open Sun. *Food Science and Technology International.*, **13(1)**, 35-40 **(2007)**.
- 18. Sulaiman SaniKankara., Mohd H.Ibrahim., MuskhazliMustafa. and RuseaGo., Ethnobotanical survey of

medicinal plants used for traditional maternal healthcare in Katsina state, Nigeria *South African Journal* of *Botany.*, **97**, 165-175 **(2015).**

Table 1: Phytochemical tests for plant extracts

Tannins	The extract was treated with 10 % alcoholic FeCl ₃	The blue-black or green color indicates the presence of tannins	
Flavonoids	The extract was treated with magnesium ribbon and concentrated Hydrochloric acid	Orange red colour indicates the presence of flavonoids	
Terpenoids	The extract was dissolved in 2 ml chloroform and 3 ml of concentrated sulphuric acid.	Formation of reddish brown color of the interface indicates the presence of terpenoids	
Saponins	The extract was mixed with 2 ml of distilled water and was allowed to stand for 10 minutes	Appearance of stable froth indicates the presence of saponins.	
Steroids	The extract was dissolved in 2 ml of chloroform in a dry test tube. To it 10 drops of acetic anhydride and 2 drops of concentrated sulphuric acid are added	Appearance of red, then blue and finally bluish green in colour indicates the presence of steroids.	
Phlobatannins	To 2 ml of the extract few drops of dilute Hcl was added	Appearance of red precipitate indicates the presence of phlobatannins.	
Carbohydrates	The extract was dissolved in 5 ml distilled water and filtered. 1 ml of filtrate solution is treated with Benedict's reagent and heated gently.	Formation of rediish precipitate indicates the presence of reducing sugars	
Cardiac Glycosides	The extract was treated with 1 ml of FeCl ₃ reagent and 99ml of glacial acetic acid. To this solution, a few drops of concentrated H ₂ SO ₄ was added.	The presence of greenish blue color within few minutes indicates the presence of deoxy sugar of cardiac glycosides	

Alkaloid	The extract was dissolved in 2N	Formation of brown/reddish
	HCl acid and filtered. To the	precipitate indicates the
	filtrate Wagner's reagent	presence of alkaloids
	(iodine in potassium iodide)	
	was added	
Test for	To the extract 0.25 % w/v of	Formation of blue violet color
proteins &	ninhydrin reagent was added	indicates the presence of amino
amino acids	and boiled for few minutes	acids or protein.
Fixed oil and	Small quantity of the extract	Oil stain on the paper indicates
fat	was pressed between two	the presence of fixed oil
	filter papers	-
Tannins	The extract was kept on	Appearance of blue color
	filter paper and sprayed with	indicates the presence of
	Ferric chloride –potassium	tannin.
	ferricyanide reagent	

Table 2: Gc-Ms Conditions

GC Programme				
Column	HP-5MS (5 % phenyl methyl siloxane)			
Equipment	Agilent Technologies (GCMS-QP2010 Plus)			
Carrier Gas	Helium gas 1 ml/min, splitless mode			
Column Oven Temp.	60.0 °C			
Injection Temp.	250.00 °C			
Injection Mode	Split			
Flow Control Mode	Linear Velocity			
Pressure	56.7 kPa			
Total Flow	8.9 mL/min			
Column Flow	0.99 mL/min			
Linear Velocity	36.3 cm/sec			
Purge Flow	3.0 mL/min			
Split Ratio	5			
Sample Injection	1 μΙ			
Detector	Mass detector			
Oven Temperature programme	60 °C (1 min hold) up to 320 °C at the rate of 2 °C/min on hold			
	MS Programme			
Start Time	3.00min			
End Time	48.00min			
ACQ Mode	Scan			
Event Time	0.50sec			
Scan Speed	1666			
Start m/z	50			
End m/z	800.00`			
Library used	NIST version—2011			
Electron energy	70 eV			
Mass Scan (m/z)	40–700 amu			
Total MS run time	120 min			

Table 3: results of phytochemical analysis of the v.amygdalina Extract

Phytochemical	Name of the test	result
analysis		
Tannins	Braymer's Test	++
Flavonoids	Shinoda's Test	++
Terpenoids	Salkowski Test	++
Saponins	Froth test	++
Steroids	Libermann Burchard test	++
Phlobatannins	Hcl test	
Carbohydrates	Benedict's Test	++
Cardiac Glycosides	Keller – Killiani's test	++
Alkaloid	Wagner's test	++
Test for proteins & amino acids	Ninhydrin Test	
Fixed oil and fat	Spot test	++
Tannins	Ferric chloride – potassium ferricyanide	++
	test	

Table 4: Bioactive Compounds Identified In The Methanol Extract Of V.Amygdalina Leaves

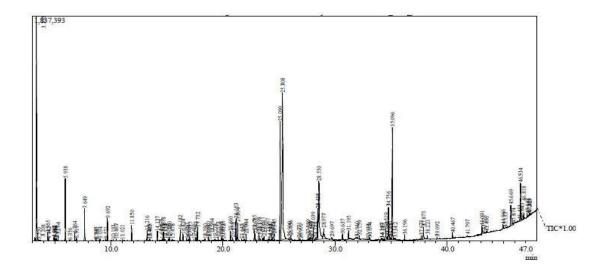
By Gc-Ms Analysis

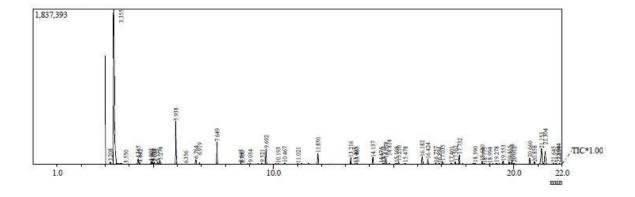
S.No	Retention Time	Formula	Mol. Wt	Compound Name	Structure
1.	3.358	C6H12O2	116	2-hydroxy-2-methyl-4- pentanone (diacetone)	но
2.	4.367	C5H8O4	132	dimethyl propanedioate	
3.	4.958	C2H7NO	61	n,o-dimethyl- hydroxylamine	NH
4.	5.275	C6H10O3	130	4-oxopentanoic acid methyl ester	j. , °
5.	5.942	C6H10O4	146	dimethyl butanedioate	
6.	6.767	C7H12O3	144	4-oxohexanoic acid, methyl ester	
7.	7.650	C7H12O4	160	dimethyl pentanedioate	~~~~
8.	:9.692	C8H14O4	174	dimethyl adipate	

9.	11.850	С9Н16О4	188	dimethyl heptanedioate	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
10.	:13.217	С14Н30	198	isotetradecane	~~~~~
11.	14.133	C10H18O4	202	dimethyl suberate	~~~.i~
12.	14.675	C9H14O5	202	dimethyl 4- oxoheptanedioate	~, ·, ·, ·,
13.	16.183	C11H16O2	180	(2,6,6-trimethyl-2-hydroxycyclohexyliden e)acetic acid lactone	
14.	16.425(C11H20O4	:216	dimethyl azelate	, , , , , , , , , , , , , , , , , , ,
15.	:17.733	C19H40	268	:nonadecane	~~~~~~
16.	20.658	C11H16O3	196	2(4h)-benzofuranone, 5,6,7,7a-tetrahydro-6- hydroxy-4,4,7a- trimethyl-, (6s-cis)-	HO
17.	21.150	C14H28O2	228	myristic acid	° CH
18.	21.300	C11H16O3	196	2(4h)-benzofuranone, 5,6,7,7a-tetrahydro-6- hydroxy-4,4,7a- trimethyl-, (6s-cis)-	но
19.	22.042	C18H38	254	octadecane	~~~~~

		I	1	Γ	
20	22.702	CONTION	270	2610	
20.	22.783	C20H38	278	2,6,10-trimethyl,14- ethylene-14-pentadecne	
21.	22.867	C18H36O	268	2-pentadecanone, 6,10,14-trimethyl-	
22.	23.200	C16H22O4	278	1,2- benzenedicarboxylic acid, bis(2- methylpropyl) ester	
23.	24.542	C17H34O2	270	methyl hexadecanoate	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24.	25.092	C14H18O6	282	1,2- benzenedicarboxylic acid, bis(2- methoxyethyl) ester	
25.	25.308	С16Н32О2	256	palmitic acid	°—————————————————————————————————————
26.	27.583	C14H30O	214	1-hydroxytetradecane	ОН
27.	27.825	C8H14O	126	bicyclo[5.1.0]octan-3-ol, (1.alpha.,3.alpha.,7.alph a.)-	
28.	28.042	C20H40O	296	3,7,11,15-tetramethyl- 2-hexadecen-1-ol	123
29.	28.442	C18H32O2	280	cis-9,cis-12- octadecadienoic acid	OH

30.	28.550	С16Н26О	234	cis,cis,cis-7,10,13- hexadecatrienal	
31.	28.975	C18H36O2	284	octadecanoic acid	OH OH
32.	30.633	C18H36O	268	1,2-epoxyoctadecane	^^^^^^
33.	31.192	C19H40O	284	1-nonadecanol	~~~~~
34.	34.517	C20H42O	298	1-eicosanol	H0~~~~
35.	34.758	C19H38O4	330	hexadecanoic acid, 2- hydroxy-1- (hydroxymethyl)ethyl ester	~~~~~~~°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
36.	35.100	C16H22O4	278	1,2- benzenedicarboxylic acid, mono(2- ethylhexyl) ester	OH OH
37.	43.092	С33Н68	464	tritriacontane	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
38.	45.667	C28H46O	398	ergosta-7,22-dien-3-ol, (3.beta.,5.alpha.,22e)-	но
39.	46.533	C23H32O4	372	xyshalogenin	
40.	3.358	C6H12O2	116	2-hydroxy-2-methyl-4- pentanone (diacetone)	но
	1	1	·	1	L


41.	4.367	C5H8O4	132	dimethyl propanedioate	^
			102	Same and the second	
42.	4.958	C2H7NO	61	n,o-dimethyl- hydroxylamine	NH
43.	5.275	C6H10O3	130	pentanoic acid, 4-oxo-, methyl ester	
44.	5.942	C6H10O4	146	dimethyl butanedioate	
45.	6.767	C7H12O3	144	4-oxohexanoic acid, methyl ester	
46.	7.650	C7H12O4	160	pentanedioic acid,) 129 °
47.	9.692	C8H14O4	174	hexanedioic acid, dimethyl ester	
48.	11.850	С9Н16О4	188	dimethyl heptanedioate	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
49.	13.217	C14H30	198	tetradecane	^~~~~
50.	14.133	C10H18O4	202	dimethyl octanedioate	
51.	14.675	C9H14O5	202	dimethyl 4- oxoheptanedioate	~, , , , , , , , , , , , , , , , , , ,


52.	16.183	C11H16O2	180	2(4h)-benzofuranone, 5,6,7,7a-tetrahydro- 4,4,7a-trimethyl-	
53.	16.425	C11H20O4	216	nonanedioic acid, dimethyl ester	, , , , , , , , , , , , , , , , , , ,
54.	17.733	C19H40	268	nonadecane	~~~~~~
55.	20.658	C11H16O3	196	2(4h)-benzofuranone, 5,6,7,7a-tetrahydro-6- hydroxy-4,4,7a- trimethyl-, (6s-cis)-	HO
56.	21.150	C14H28O2	228	tetradecanoic acid	°~~~~~
57.	21.300	C11H16O3	196	2(4h)-benzofuranone, 5,6,7,7a-tetrahydro-6- hydroxy-4,4,7a- trimethyl-, (6s-cis)-	HO
58.	22.042	C18H38	254	octadecane	~~~~~~
59.	22.783	С20Н38	278	2,6,10-trimethyl,14- ethylene-14-pentadecne	~~~~~~
60.	22.867	C18H36O	268	2-pentadecanone, 6,10,14-trimethyl	
61.	23.200	C16H22O4	278	1,2- benzenedicarboxylic acid, bis(2- methylpropyl) ester	

62.	24.542	C17H34O2	270	hexadecanoic acid, methyl ester	~~~~~°°
63.	25.092	C14H18O6	282	1,2- benzenedicarboxylic acid, bis(2- methoxyethyl) ester	
64.	25.308	С16Н32О2	256	n-hexadecanoic acid	°—————————————————————————————————————
65.	27.583	C14H30O	214	1-tetradecanol	OH
66.	27.825	C8H14O	126	bicyclo[5.1.0]octan-3-ol, (1.alpha.,3.alpha.,7.alph a.)-	
67.	28.042	С20Н40О	296	:2-hexadecen-1-ol, 3,7,11,15-tetramethyl-, [r-[r*,r*-(e)]]- (t- phytol) \$\$ 3,7,11,15- tetramethyl-2- hexadecen-1-ol	HO~=
68.	28.442	C18H32O2	280	`9,12-octadecadienoic acid (z,z)-	OH 280
69.	28.550	С16Н26О	234	cis,cis,cis-7,10,13- hexadecatrienal	
70.	28.975	C18H36O2	284	octadecanoic acid	OH OH
71.	30.633	C18H36O	268	1,2-epoxyoctadecane	ٮٛٮ
72.	31.192	C19H40O	284	1-nonadecanol	~~~~~
L			1		

73.	34.517	C20H42O	298	1-eicosanol	но~~~~
74.	34.758	С19Н38О4	330	hexadecanoic acid, 2- hydroxy-1- (hydroxymethyl)ethyl ester	^^^^^0 C ^{OH} 0 COH
75.	35.100	C16H22O4	278	1,2- benzenedicarboxylic acid, mono(2- ethylhexyl) ester	O OH
76.	37.875	С19Н38О4	330	hexadecanoic acid, 2- hydroxy-1- (hydroxymethyl)ethyl ester	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
77.	43.092	С33Н68	464	n-tritriacontane`	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
78.	45.667	C28H46O	398	ergosta-7,22-dien-3-ol, (3.beta.,5.alpha.,22e)-	но
79.	46.533	C23H32O4	372	xyshalogenin	

Figure 1: Gc-Ms Chromatogram Of V.Amygdalina Leaf (Methanol) Extract

