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Abstract 

Distance metrics play a crucial role in machine learning, pattern recognition, and 
data mining, as they directly influence the performance of various algorithms, particularly in 
clustering, classificatio and nearest neighbor search tasks. This study presents a comparative 
evaluation of widely used distance measures - Euclidean, Manhattan, Minkowski, and 
Hamming. The authors used the Iris dataset as a benchmark. The experimental analysis 
focuses on assessing their impact on classification accuracy, clustering quality and 
computational efficiency. The findings provide valuable insights into the suitability of 
different distance metrics for specific machine learning tasks, thereby assisting researchers 
and practitioners in selecting appropriate distance measures to enhance algorithmic 
performance and decision making processes. 
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I .  INTRODUCTION 

In the domain of Data Science and Machine Learning, distance metrics form the foundation 
of a wide range of algorithms and analytical techniques. They play a critical role in 
applications such as clustering, classification, recommendation systems, anomaly detection 
and dimensionality reduction. Distance measures mathematically quantify the similarity or 
dissimilarity between data points in a given feature space, thereby guiding the behavior and 
decision boundaries of learning algorithms [10]. Algorithms such as k-Nearest Neighbors (k-
NN), k-means clustering and hierarchical clustering fundamentally rely on distance 
computations for grouping and labeling data [1]. 

The choice of an appropriate distance metric significantly impacts the efficiency and 
predictive accuracy of machine learning models. However, no single distance function can be 
considered universally optimal for all datasets and problem domains. The performance of a 
distance metric is influenced by various factors, including data distribution, dimensionality, 
feature correlation, noise presence and task objectives [8]. For example, Euclidean distance is 
widely used in geometrical spaces with normalized continuous features, while cosine distance 
is preferred for high-dimensional and sparse text data [2]. Manhattan and Minkowski 
distances, on the other hand, provide flexibility in capturing different geometric 
characteristics of the data [3]. 

Due to this diversity, rigorous evaluation of distance metrics becomes a vital step in building 
robust machine learning models. Evaluation typically involves analyzing the impact of 
distance measures on performance indicators such as classification accuracy, multi-class error 
rate, cluster compactness and separation indices [4]. In classification tasks, the suitability of a 
metric is assessed by measuring its ability to improve predictive consistency and reduce 
misclassification [6]. Similarly, in clustering applications, internal validation measures such 
as the Silhouette Coefficient and Davies–Bouldin Index are commonly used to quantify 
cluster quality [15]. 

Moreover, in high-dimensional data spaces, traditional distance measures often suffer from 
performance degradation due to the curse of dimensionality, where the contrast between 
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distances of near and far points diminishes [14]. This further emphasizes the importance of 
selecting suitable distance metrics based on data characteristics and application requirements. 
Advanced metrics and dimensionality reduction techniques are often recommended to 
mitigate this issue [11]. 

Therefore, a systematic evaluation of different distance metrics is essential for optimizing 
performance in machine learning systems. Such evaluations not only improve accuracy and 
clustering quality but also enhance the reliability and interpretability of the models. This 
study aims to investigate and compare the effectiveness of widely used distance metrics, 
including Euclidean, Manhattan, Minkowski and Cosine distance, across structured datasets, 
thereby providing practical guidelines for metric selection in real-world applications. 

I I.  LITERATURE REVIEW 

Several studies[12][13] have investigated the role of distance metrics in improving the 
performance of machine learning algorithms, particularly in classification tasks where 
similarity computation plays a crucial role. 

Choong Wen Yean et al. [9] analyzed the influence of various distance metrics on the 
performance of the K-Nearest Neighbor (KNN) classifier for classifying EEG signals in 
stroke patients. Their study highlighted that the choice of distance metric significantly 
impacts classification accuracy when handling complex physiological signals. By comparing 
multiple distance measures, the authors demonstrated that carefully selecting an appropriate 
metric enhances the discriminative capacity of KNN, especially in medical signal 
classification contexts where subtle differences in feature patterns determine clinical 
outcomes. 

Oduntan et al. [5] conducted a comparative analysis of Euclidean distance and cosine 
similarity for automated essay-type grading systems. Their work focused on text-based 
classification and similarity scoring, where traditional Euclidean distance was found to be 
sensitive to document length, while cosine similarity provided better consistency in 
evaluating semantic closeness between student answers and model solutions. Their findings 
emphasize that distance metrics must be selected according to data type and structure, as 
metric effectiveness varies significantly between numerical and textual domains. 

In the context of imbalanced datasets, Mahin et al. [7] explored the impact of distance metric 
learning in identifying sub-categories within the minority class. Their research proposed that 
suitable distance metrics can improve minority class representation and detection, which is 
crucial in applications such as fraud detection and medical diagnosis. They compared 
different metrics across datasets of varying statistical properties and demonstrated that 
distance functions play a vital role in improving classification reliability under skewed class 
distributions. 

A comprehensive empirical evaluation of distance metrics for KNN was presented by 
Chomboon et al. [4]. The authors compared 11 distance measures, including Euclidean, 
Manhattan, Mahalanobis, and Hamming distances, using eight synthetic datasets with varying 
feature distributions. Their experimental results concluded that no single distance metric is 
universally optimal, and performance depends heavily on dataset characteristics such as 
dimensionality, noise, and class overlap. This study provides strong evidence that distance 
metric selection must be tailored to the nature of the problem and data structure. 

From the above studies, it is evident that distance metrics play a critical role in classification 
accuracy, particularly for KNN and similarity-based models. However, most existing works 
focus on specific application domains, such as medical signals, text grading, or imbalance 
learning. There is still a research gap in developing a generalized comparative framework to 
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evaluate distance metrics across diverse real-world datasets, which motivates the present 
study. 

III. MATHEMATICAL FOUNDATIONS OF DISTANCE METRICS FOR SIMILARITY 

MEASUREMENT 

Distance metrics are widely employed in machine learning to quantify the degree of 
similarity or dissimilarity between data instances. These measures constitute the foundation 
of numerous algorithms, particularly in clustering, classification, nearest-neighbor-based 
learning and dimensionality reduction. The choice of an appropriate distance metric 
significantly influences model performance, as different metrics capture different geometric 
and statistical characteristics of the data. This section presents a concise discussion of 
commonly used distance metrics along with their properties, advantages and limitations. 

Euclidean Distance 

Euclidean distance is one of the most fundamental and extensively used metrics for 
measuring the straight-line distance between two points in a multidimensional space.  

Given two vectors ( A = (x1, y1, ..., x_n) ) and ( B = (x2, y2, ..., xn) ), the Euclidean distance 
is defined as: 

 

This metric treats all dimensions equally and is best suited for continuous numerical data. 
Due to its geometric interpretability and computational simplicity, it is frequently used in 
clustering and classification algorithms. However, Euclidean distance is highly sensitive to 
scale variations and requires feature normalization. Additionally, its effectiveness decreases 
in high-dimensional spaces due to the curse of dimensionality, and it is vulnerable to the 
influence of outliers. 

Advantages: 
• Simple and intuitive geometric interpretation 
• Efficient for low-dimensional continuous datasets 
• Computationally inexpensive 

Limitations: 
• Sensitive to feature scaling 
• Not robust against outliers 
• Performance degrades in high-dimensional spaces 

Manhattan Distance 

Manhattan distance, also known as the L1 norm or taxicab distance, measures the distance 
between two points by summing the absolute differences of their corresponding coordinates: 
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Unlike Euclidean distance, Manhattan distance computes paths along axis-aligned directions, 
making it more suitable for grid-based or sparse data environments. It is relatively more 
robust to outliers as it does not square the differences. 

Advantages: 
• Less sensitive to outliers 
• Performs better in high-dimensional and sparse feature spaces 
• Simple and computationally efficient 

Limitations: 
• Less intuitive in continuous or non-grid spaces 
• Not optimal when features exhibit strong correlations 

Minkowski Distance 

Minkowski distance is a generalized distance metric that encompasses Euclidean and 
Manhattan distances as special cases. It is defined as: 

 

where  � ≥ 1  is a parameter that controls the metric behavior. When  p = 1 , it reduces to 
Manhattan distance and when  p = 2, it becomes Euclidean distance. 

This metric provides flexibility in tuning the sensitivity of the distance measure based on data 
characteristics. However, selecting an optimal value of ( p ) requires domain knowledge and 
experimental validation. 

Advantages: 
• Generalized framework covering multiple distance measures 
• Flexible for different dataset distributions 
• Adaptable to various applications 

Limitations: 
• Requires careful parameter tuning 
• Computationally heavier for large p values 
• Sensitivity to outliers increases with higher p 

Hamming Distance 

Hamming distance is used to measure dissimilarity between two vectors or strings of equal 
length by counting the number of positions at which the corresponding elements differ: 

 

where | xi-yi |  is an indicator function. 

This metric is particularly suitable for binary, categorical, or discrete data. It is extensively 
applied in text mining, bioinformatics, and error detection systems. 

Advantages: 
• Highly effective for binary and categorical data 
• Simple and computationally efficient 
• Useful in error detection and pattern matching 
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Limitations: 
• Not applicable to continuous-valued data 
• Requires equal-length vectors 

IV.  COMPARATIVE ANALYSIS AND DISCUSSION 

A. Comparative Performance of Distance Metrics 

The selection of an appropriate distance metric significantly influences the performance of 
similarity-based learning algorithms, particularly in classification tasks. In this study, four 
widely used distance metrics - Euclidean, Manhattan, Minkowski, and Hamming - were 
evaluated using three performance measures: Overall Accuracy, Balanced Accuracy, and 
Accuracy Adjusted for Class Imbalance. 

The obtained results are tabulated below: 

Distance 
Metric 

Overall Accuracy 
(%) 

Balanced 
Accuracy (%) 

Imbalanced Adjusted 
Accuracy (%) 

Euclidean 95.56 95.56 95.56 

Manhattan 93.33 92.31 93.33 

Minkowski 84.44 82.05 84.44 

Hamming 75.56 75.03 75.56 

Table 1: Comparative performance of Distance metrics 

From the results, Euclidean distance exhibits the highest accuracy across all three 
evaluation metrics, indicating its strong suitability for the given dataset. Its geometric nature 
effectively captures the underlying spatial relationships in the numerical feature space. 

The Manhattan distance, although slightly lower in performance than Euclidean, still 
demonstrates competitive accuracy. This suggests that Manhattan distance performs well in 
capturing absolute differences between features and may outperform Euclidean distance in 
scenarios involving high-dimensional or sparse datasets. 

The Minkowski distance, despite its mathematical flexibility, shows comparatively lower 
performance. This implies that the chosen value of the Minkowski parameter ppp may not 
optimally suit the dataset structure, highlighting the importance of careful parameter tuning. 

The Hamming distance yields the lowest accuracy values. This can be attributed to its 
design for binary or categorical data. When applied to continuous or mixed numerical 
datasets, it fails to capture meaningful similarity relationships effectively. 

B. Graph-Based Performance Analysis 

To complement the numerical analysis, performance graphs were generated for: 

1. Overall Accuracy 

2. Balanced Accuracy 

3. Imbalanced Accuracy 
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1. Overall Accuracy Graph Analysis 

The Overall Accuracy graph clearly shows that the Euclidean distance metric dominates, 
achieving the peak accuracy of 95.56%. Manhattan follows closely at 93.33%, while 
Minkowski and Hamming display a significant decline. The steep drop in Hamming distance 
confirms its limited applicability for non-binary datasets. 

 

Figure 1: Overall Accuracy of various metrics 

2. Balanced Accuracy Graph Analysis 

The Balanced Accuracy graph further validates the consistency of Euclidean distance, 
maintaining the highest value at 95.56%. Since balanced accuracy accounts for class-wise 
performance, this indicates that Euclidean distance performs uniformly across both majority 
and minority classes. The drop observed in Manhattan and Minkowski highlights their 
reduced robustness in handling class imbalance. 

 

Figure 2: Balanced Accuracy of various metrics 
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3. Imbalanced Accuracy Graph Analysis 

In imbalanced datasets, traditional accuracy measures can be misleading. However, Euclidean 
distance continues to maintain superior performance even after adjustment for class 
imbalance. This indicates that it does not overfit the majority class and effectively captures 
minority class patterns. Manhattan performs moderately well, while Minkowski and 
Hamming suffer significant performance degradation. 

 

Figure 2: Imbalanced Accuracy of various metrics 

 

C. Discussion 

The experimental analysis confirms that no single distance metric is universally optimal, 
but in the context of the present dataset and problem domain, Euclidean distance emerges 
as the most effective choice. Its strong performance across overall, balanced, and 
imbalanced accuracy metrics demonstrates its reliability in both balanced and skewed class 
distributions. 

However, it is important to note that Manhattan distance may outperform Euclidean 
distance under specific conditions such as: 

 High-dimensional spaces 

 Sparse data distributions 

 Datasets with outliers 

The lower performance of Minkowski distance suggests that its parameter ppp must be 
carefully tuned to suit the data characteristics. Similarly, the poor performance of Hamming 
distance highlights its unsuitability for continuous datasets and reinforces its application 
primarily to binary or categorical domains. 

Overall, the analysis confirms that the choice of distance metric should be guided by 
dataset structure, feature type, and distribution properties rather than accuracy alone. 
Future work could explore adaptive or hybrid distance measures to further improve 
performance across diverse data scenarios. 
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V.  CONCLUSION 

This study presented a comparative evaluation of four widely used distance metrics — 
Euclidean, Manhattan, Minkowski, and Hamming — in the context of similarity-based 
classification. The performance of these metrics was analyzed using three reliable evaluation 
measures: overall accuracy, balanced accuracy, and accuracy adjusted for class imbalance. 
The experimental results demonstrate that the Euclidean distance metric consistently 
achieved the highest performance across all evaluation criteria, indicating its suitability 
for datasets where numerical features exhibit meaningful geometric relationships. 

While Manhattan distance showed competitive performance and may outperform Euclidean 
distance in specific scenarios involving high dimensionality or sparse feature spaces, 
Minkowski and Hamming distances exhibited comparatively lower effectiveness for the 
dataset under consideration. In particular, the poor performance of Hamming distance 
highlights its limitation when applied to continuous numerical data rather than categorical or 
binary features. 

The findings of this study confirm that the selection of a distance metric should be driven by 
the characteristics of the dataset and the underlying problem domain rather than a generalized 
assumption of optimality. Therefore, careful consideration of data type, distribution, and 
variability is essential when applying distance-based machine learning models. 

VI. FUTURE RESEARCH DIRECTIONS 

To further enhance and extend this work, the following future research directions are 
recommended: 

1. Adaptive Distance Metric Learning 
Future studies can explore dynamic or adaptive distance metric learning approaches 
where the distance function evolves based on data distribution and learning feedback. 

2. Incorporating Weighted Distance Measures 
Introducing feature weighting schemes into existing distance metrics can help 
prioritize more important attributes and potentially improve classification accuracy. 

3. Application on Large-Scale Real-World Datasets 
The proposed analysis can be extended to large-scale and high-dimensional real-world 
datasets such as medical diagnostics, fraud detection, or sensor data. 

4. Hybrid Distance Models 
Developing hybrid distance measures by combining Euclidean and Manhattan metrics 
can enhance performance for complex, heterogeneous datasets. 

5. Evaluation on Deep Learning Feature Spaces 
Testing the performance of distance metrics on deep feature embeddings generated by 
neural networks can provide more insights into their applicability in modern AI 
systems. 

6. Robustness Against Noise and Outliers 
Further research can analyze how distance metrics behave under noisy and adversarial 
conditions, and propose more robust alternatives. 

7. Cross-Domain Validation 
Applying this methodology across multiple domains (text data, image data, medical 
data, etc.) will enhance the generalizability of the proposed conclusions. 
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