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Abstract

Distance metrics play a crucial role in machine learning, pattern recognition, and
data mining, as they directly influence the performance of various algorithms, particularly in
clustering, classificatio and nearest neighbor search tasks. This study presents a comparative
evaluation of widely used distance measures - Euclidean, Manhattan, Minkowski, and
Hamming. The authors used the Iris dataset as a benchmark. The experimental analysis
focuses on assessing their impact on classification accuracy, clustering quality and
computational efficiency. The findings provide valuable insights into the suitability of
different distance metrics for specific machine learning tasks, thereby assisting researchers
and practitioners in selecting appropriate distance measures to enhance algorithmic
performance and decision making processes.
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I. INTRODUCTION

In the domain of Data Science and Machine Learning, distance metrics form the foundation
of a wide range of algorithms and analytical techniques. They play a critical role in
applications such as clustering, classification, recommendation systems, anomaly detection
and dimensionality reduction. Distance measures mathematically quantify the similarity or
dissimilarity between data points in a given feature space, thereby guiding the behavior and
decision boundaries of learning algorithms [10]. Algorithms such as k-Nearest Neighbors (k-
NN), k-means clustering and hierarchical clustering fundamentally rely on distance
computations for grouping and labeling data [1].

The choice of an appropriate distance metric significantly impacts the efficiency and
predictive accuracy of machine learning models. However, no single distance function can be
considered universally optimal for all datasets and problem domains. The performance of a
distance metric is influenced by various factors, including data distribution, dimensionality,
feature correlation, noise presence and task objectives [8]. For example, Euclidean distance is
widely used in geometrical spaces with normalized continuous features, while cosine distance
is preferred for high-dimensional and sparse text data [2]. Manhattan and Minkowski
distances, on the other hand, provide flexibility in capturing different geometric
characteristics of the data [3].

Due to this diversity, rigorous evaluation of distance metrics becomes a vital step in building
robust machine learning models. Evaluation typically involves analyzing the impact of
distance measures on performance indicators such as classification accuracy, multi-class error
rate, cluster compactness and separation indices [4]. In classification tasks, the suitability of a
metric is assessed by measuring its ability to improve predictive consistency and reduce
misclassification [6]. Similarly, in clustering applications, internal validation measures such
as the Silhouette Coefficient and Davies—Bouldin Index are commonly used to quantify
cluster quality [15].

Moreover, in high-dimensional data spaces, traditional distance measures often suffer from
performance degradation due to the curse of dimensionality, where the contrast between
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distances of near and far points diminishes [14]. This further emphasizes the importance of
selecting suitable distance metrics based on data characteristics and application requirements.
Advanced metrics and dimensionality reduction techniques are often recommended to
mitigate this issue [11].

Therefore, a systematic evaluation of different distance metrics is essential for optimizing
performance in machine learning systems. Such evaluations not only improve accuracy and
clustering quality but also enhance the reliability and interpretability of the models. This
study aims to investigate and compare the effectiveness of widely used distance metrics,
including Euclidean, Manhattan, Minkowski and Cosine distance, across structured datasets,
thereby providing practical guidelines for metric selection in real-world applications.

I1. LITERATURE REVIEW

Several studies[12][13] have investigated the role of distance metrics in improving the
performance of machine learning algorithms, particularly in classification tasks where
similarity computation plays a crucial role.

Choong Wen Yean et al. [9] analyzed the influence of various distance metrics on the
performance of the K-Nearest Neighbor (KNN) classifier for classifying EEG signals in
stroke patients. Their study highlighted that the choice of distance metric significantly
impacts classification accuracy when handling complex physiological signals. By comparing
multiple distance measures, the authors demonstrated that carefully selecting an appropriate
metric enhances the discriminative capacity of KNN, especially in medical signal
classification contexts where subtle differences in feature patterns determine clinical
outcomes.

Oduntan et al. [5] conducted a comparative analysis of Euclidean distance and cosine
similarity for automated essay-type grading systems. Their work focused on text-based
classification and similarity scoring, where traditional Euclidean distance was found to be
sensitive to document length, while cosine similarity provided better consistency in
evaluating semantic closeness between student answers and model solutions. Their findings
emphasize that distance metrics must be selected according to data type and structure, as
metric effectiveness varies significantly between numerical and textual domains.

In the context of imbalanced datasets, Mahin et al. [7] explored the impact of distance metric
learning in identifying sub-categories within the minority class. Their research proposed that
suitable distance metrics can improve minority class representation and detection, which is
crucial in applications such as fraud detection and medical diagnosis. They compared
different metrics across datasets of varying statistical properties and demonstrated that
distance functions play a vital role in improving classification reliability under skewed class
distributions.

A comprehensive empirical evaluation of distance metrics for KNN was presented by
Chomboon et al. [4]. The authors compared 11 distance measures, including Euclidean,
Manhattan, Mahalanobis, and Hamming distances, using eight synthetic datasets with varying
feature distributions. Their experimental results concluded that no single distance metric is
universally optimal, and performance depends heavily on dataset characteristics such as
dimensionality, noise, and class overlap. This study provides strong evidence that distance
metric selection must be tailored to the nature of the problem and data structure.

From the above studies, it is evident that distance metrics play a critical role in classification
accuracy, particularly for KNN and similarity-based models. However, most existing works
focus on specific application domains, such as medical signals, text grading, or imbalance
learning. There is still a research gap in developing a generalized comparative framework to
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evaluate distance metrics across diverse real-world datasets, which motivates the present
study.

III. MATHEMATICAL FOUNDATIONS OF DISTANCE METRICS FOR SIMILARITY
MEASUREMENT

Distance metrics are widely employed in machine learning to quantify the degree of
similarity or dissimilarity between data instances. These measures constitute the foundation
of numerous algorithms, particularly in clustering, classification, nearest-neighbor-based
learning and dimensionality reduction. The choice of an appropriate distance metric
significantly influences model performance, as different metrics capture different geometric
and statistical characteristics of the data. This section presents a concise discussion of
commonly used distance metrics along with their properties, advantages and limitations.

Euclidean Distance

Euclidean distance is one of the most fundamental and extensively used metrics for
measuring the straight-line distance between two points in a multidimensional space.

Given two vectors (A = (x1, yl, ..., x n))and ( B=(x2, y2, ..., xn) ), the Euclidean distance
is defined as:

d(x, y) = > — x;)°

This metric treats all dimensions equally and is best suited for continuous numerical data.
Due to its geometric interpretability and computational simplicity, it is frequently used in
clustering and classification algorithms. However, Euclidean distance is highly sensitive to
scale variations and requires feature normalization. Additionally, its effectiveness decreases
in high-dimensional spaces due to the curse of dimensionality, and it is vulnerable to the
influence of outliers.

Advantages:

* Simple and intuitive geometric interpretation

» Efficient for low-dimensional continuous datasets
» Computationally inexpensive

Limitations:

* Sensitive to feature scaling

* Not robust against outliers

* Performance degrades in high-dimensional spaces

Manhattan Distance

Manhattan distance, also known as the L1 norm or taxicab distance, measures the distance
between two points by summing the absolute differences of their corresponding coordinates:

Mdist = [x2-x1|+ |y2-yl]

PAGE NO : 38



Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 12

Unlike Euclidean distance, Manhattan distance computes paths along axis-aligned directions,
making it more suitable for grid-based or sparse data environments. It is relatively more
robust to outliers as it does not square the differences.

Advantages:

* Less sensitive to outliers

* Performs better in high-dimensional and sparse feature spaces
* Simple and computationally efficient

Limitations:
* Less intuitive in continuous or non-grid spaces
* Not optimal when features exhibit strong correlations

Minkowski Distance

Minkowski distance is a generalized distance metric that encompasses Euclidean and
Manhattan distances as special cases. It is defined as:

1
T }_J
D(x,y) = E |y — wi|P

=1

where p > 1 1is a parameter that controls the metric behavior. When p =1, it reduces to
Manhattan distance and when p =2, it becomes Euclidean distance.

This metric provides flexibility in tuning the sensitivity of the distance measure based on data
characteristics. However, selecting an optimal value of ( p ) requires domain knowledge and
experimental validation.

Advantages:

* Generalized framework covering multiple distance measures
» Flexible for different dataset distributions

* Adaptable to various applications

Limitations:

» Requires careful parameter tuning

» Computationally heavier for large p values

* Sensitivity to outliers increases with higher p

Hamming Distance
Hamming distance is used to measure dissimilarity between two vectors or strings of equal
length by counting the number of positions at which the corresponding elements differ:

n=n

1
d(x,y) = — g > — il
n
n=1
where | x;-y; | is an indicator function.

This metric is particularly suitable for binary, categorical, or discrete data. It is extensively
applied in text mining, bioinformatics, and error detection systems.

Advantages:

* Highly effective for binary and categorical data
* Simple and computationally efficient

* Useful in error detection and pattern matching
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Limitations:
* Not applicable to continuous-valued data
* Requires equal-length vectors

IV. COMPARATIVE ANALYSIS AND DISCUSSION
A. Comparative Performance of Distance Metrics

The selection of an appropriate distance metric significantly influences the performance of
similarity-based learning algorithms, particularly in classification tasks. In this study, four
widely used distance metrics - Euclidean, Manhattan, Minkowski, and Hamming - were
evaluated using three performance measures: Overall Accuracy, Balanced Accuracy, and
Accuracy Adjusted for Class Imbalance.

The obtained results are tabulated below:

Distance | Overall Accuracy Balanced Imbalanced Adjusted
Metric (%) Accuracy (%) Accuracy (%)
Euclidean 95.56 95.56 95.56
Manhattan 93.33 92.31 93.33
Minkowski 84.44 82.05 84.44
Hamming 75.56 75.03 75.56

Table 1: Comparative performance of Distance metrics

From the results, Euclidean distance exhibits the highest accuracy across all three
evaluation metrics, indicating its strong suitability for the given dataset. Its geometric nature
effectively captures the underlying spatial relationships in the numerical feature space.

The Manhattan distance, although slightly lower in performance than Euclidean, still
demonstrates competitive accuracy. This suggests that Manhattan distance performs well in
capturing absolute differences between features and may outperform Euclidean distance in
scenarios involving high-dimensional or sparse datasets.

The Minkowski distance, despite its mathematical flexibility, shows comparatively lower
performance. This implies that the chosen value of the Minkowski parameter ppp may not
optimally suit the dataset structure, highlighting the importance of careful parameter tuning.

The Hamming distance yields the lowest accuracy values. This can be attributed to its
design for binary or categorical data. When applied to continuous or mixed numerical
datasets, it fails to capture meaningful similarity relationships effectively.

B. Graph-Based Performance Analysis

To complement the numerical analysis, performance graphs were generated for:
1. Overall Accuracy
2. Balanced Accuracy

3. Imbalanced Accuracy
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1. Overall Accuracy Graph Analysis

The Overall Accuracy graph clearly shows that the Euclidean distance metric dominates,
achieving the peak accuracy of 95.56%. Manhattan follows closely at 93.33%, while
Minkowski and Hamming display a significant decline. The steep drop in Hamming distance
confirms its limited applicability for non-binary datasets.

Overall Accuracy Graph
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Figure 1: Overall Accuracy of various metrics
2. Balanced Accuracy Graph Analysis

The Balanced Accuracy graph further validates the consistency of Euclidean distance,
maintaining the highest value at 95.56%. Since balanced accuracy accounts for class-wise
performance, this indicates that Euclidean distance performs uniformly across both majority
and minority classes. The drop observed in Manhattan and Minkowski highlights their
reduced robustness in handling class imbalance.

Balanced Accuracy Graph
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Figure 2: Balanced Accuracy of various metrics
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3. Imbalanced Accuracy Graph Analysis

In imbalanced datasets, traditional accuracy measures can be misleading. However, Euclidean
distance continues to maintain superior performance even after adjustment for class
imbalance. This indicates that it does not overfit the majority class and effectively captures
minority class patterns. Manhattan performs moderately well, while Minkowski and
Hamming suffer significant performance degradation.

Imbalanced Accuracy Graph
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Figure 2: Imbalanced Accuracy of various metrics

C. Discussion

The experimental analysis confirms that no single distance metric is universally optimal,
but in the context of the present dataset and problem domain, Euclidean distance emerges
as the most effective choice. Its strong performance across overall, balanced, and
imbalanced accuracy metrics demonstrates its reliability in both balanced and skewed class
distributions.

However, it is important to note that Manhattan distance may outperform Euclidean
distance under specific conditions such as:

o High-dimensional spaces
e Sparse data distributions
o Datasets with outliers

The lower performance of Minkowski distance suggests that its parameter ppp must be
carefully tuned to suit the data characteristics. Similarly, the poor performance of Hamming
distance highlights its unsuitability for continuous datasets and reinforces its application
primarily to binary or categorical domains.

Overall, the analysis confirms that the choice of distance metric should be guided by
dataset structure, feature type, and distribution properties rather than accuracy alone.
Future work could explore adaptive or hybrid distance measures to further improve
performance across diverse data scenarios.
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V. CONCLUSION

This study presented a comparative evaluation of four widely used distance metrics —
Euclidean, Manhattan, Minkowski, and Hamming — in the context of similarity-based
classification. The performance of these metrics was analyzed using three reliable evaluation
measures: overall accuracy, balanced accuracy, and accuracy adjusted for class imbalance.
The experimental results demonstrate that the Euclidean distance metric consistently
achieved the highest performance across all evaluation criteria, indicating its suitability
for datasets where numerical features exhibit meaningful geometric relationships.

While Manhattan distance showed competitive performance and may outperform Euclidean
distance in specific scenarios involving high dimensionality or sparse feature spaces,
Minkowski and Hamming distances exhibited comparatively lower effectiveness for the
dataset under consideration. In particular, the poor performance of Hamming distance
highlights its limitation when applied to continuous numerical data rather than categorical or
binary features.

The findings of this study confirm that the selection of a distance metric should be driven by
the characteristics of the dataset and the underlying problem domain rather than a generalized
assumption of optimality. Therefore, careful consideration of data type, distribution, and
variability is essential when applying distance-based machine learning models.

V1. FUTURE RESEARCH DIRECTIONS

To further enhance and extend this work, the following future research directions are
recommended:

1. Adaptive Distance Metric Learning
Future studies can explore dynamic or adaptive distance metric learning approaches
where the distance function evolves based on data distribution and learning feedback.

2. Incorporating Weighted Distance Measures
Introducing feature weighting schemes into existing distance metrics can help
prioritize more important attributes and potentially improve classification accuracy.

3. Application on Large-Scale Real-World Datasets
The proposed analysis can be extended to large-scale and high-dimensional real-world
datasets such as medical diagnostics, fraud detection, or sensor data.

4. Hybrid Distance Models
Developing hybrid distance measures by combining Euclidean and Manhattan metrics
can enhance performance for complex, heterogeneous datasets.

5. Evaluation on Deep Learning Feature Spaces
Testing the performance of distance metrics on deep feature embeddings generated by
neural networks can provide more insights into their applicability in modern Al
systems.

6. Robustness Against Noise and Outliers
Further research can analyze how distance metrics behave under noisy and adversarial
conditions, and propose more robust alternatives.

7. Cross-Domain Validation
Applying this methodology across multiple domains (text data, image data, medical
data, etc.) will enhance the generalizability of the proposed conclusions.
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