

Distance Metric Optimization and Comparative Evaluation in Machine Learning Frameworks

Dr.S.ALAGU¹, Dr.R.JAYASUJI²

^{1,2} Assistant Professor, Department of Computer Science
Hindustan College of Arts & Science, Chennai, Tamilnadu, India

Abstract

Distance metrics play a crucial role in machine learning, pattern recognition, and data mining, as they directly influence the performance of various algorithms, particularly in clustering, classification and nearest neighbor search tasks. This study presents a comparative evaluation of widely used distance measures - Euclidean, Manhattan, Minkowski, and Hamming. The authors used the Iris dataset as a benchmark. The experimental analysis focuses on assessing their impact on classification accuracy, clustering quality and computational efficiency. The findings provide valuable insights into the suitability of different distance metrics for specific machine learning tasks, thereby assisting researchers and practitioners in selecting appropriate distance measures to enhance algorithmic performance and decision making processes.

Keywords : Distance Metrics, k-Nearest Neighbor (KNN), Classification, Balanced Accuracy, Imbalanced Data, Metric Evaluation, Machine Learning Performance, Pattern Recognition, Data Mining.

I. INTRODUCTION

In the domain of Data Science and Machine Learning, distance metrics form the foundation of a wide range of algorithms and analytical techniques. They play a critical role in applications such as clustering, classification, recommendation systems, anomaly detection and dimensionality reduction. Distance measures mathematically quantify the similarity or dissimilarity between data points in a given feature space, thereby guiding the behavior and decision boundaries of learning algorithms [10]. Algorithms such as k-Nearest Neighbors (k-NN), k-means clustering and hierarchical clustering fundamentally rely on distance computations for grouping and labeling data [1].

The choice of an appropriate distance metric significantly impacts the efficiency and predictive accuracy of machine learning models. However, no single distance function can be considered universally optimal for all datasets and problem domains. The performance of a distance metric is influenced by various factors, including data distribution, dimensionality, feature correlation, noise presence and task objectives [8]. For example, Euclidean distance is widely used in geometrical spaces with normalized continuous features, while cosine distance is preferred for high-dimensional and sparse text data [2]. Manhattan and Minkowski distances, on the other hand, provide flexibility in capturing different geometric characteristics of the data [3].

Due to this diversity, rigorous evaluation of distance metrics becomes a vital step in building robust machine learning models. Evaluation typically involves analyzing the impact of distance measures on performance indicators such as classification accuracy, multi-class error rate, cluster compactness and separation indices [4]. In classification tasks, the suitability of a metric is assessed by measuring its ability to improve predictive consistency and reduce misclassification [6]. Similarly, in clustering applications, internal validation measures such as the Silhouette Coefficient and Davies–Bouldin Index are commonly used to quantify cluster quality [15].

Moreover, in high-dimensional data spaces, traditional distance measures often suffer from performance degradation due to the curse of dimensionality, where the contrast between

distances of near and far points diminishes [14]. This further emphasizes the importance of selecting suitable distance metrics based on data characteristics and application requirements. Advanced metrics and dimensionality reduction techniques are often recommended to mitigate this issue [11].

Therefore, a systematic evaluation of different distance metrics is essential for optimizing performance in machine learning systems. Such evaluations not only improve accuracy and clustering quality but also enhance the reliability and interpretability of the models. This study aims to investigate and compare the effectiveness of widely used distance metrics, including Euclidean, Manhattan, Minkowski and Cosine distance, across structured datasets, thereby providing practical guidelines for metric selection in real-world applications.

II. LITERATURE REVIEW

Several studies[12][13] have investigated the role of distance metrics in improving the performance of machine learning algorithms, particularly in classification tasks where similarity computation plays a crucial role.

Choong Wen Yean *et al.* [9] analyzed the influence of various distance metrics on the performance of the K-Nearest Neighbor (KNN) classifier for classifying EEG signals in stroke patients. Their study highlighted that the choice of distance metric significantly impacts classification accuracy when handling complex physiological signals. By comparing multiple distance measures, the authors demonstrated that carefully selecting an appropriate metric enhances the discriminative capacity of KNN, especially in medical signal classification contexts where subtle differences in feature patterns determine clinical outcomes.

Oduntan *et al.* [5] conducted a comparative analysis of Euclidean distance and cosine similarity for automated essay-type grading systems. Their work focused on text-based classification and similarity scoring, where traditional Euclidean distance was found to be sensitive to document length, while cosine similarity provided better consistency in evaluating semantic closeness between student answers and model solutions. Their findings emphasize that distance metrics must be selected according to data type and structure, as metric effectiveness varies significantly between numerical and textual domains.

In the context of imbalanced datasets, Mahin *et al.* [7] explored the impact of distance metric learning in identifying sub-categories within the minority class. Their research proposed that suitable distance metrics can improve minority class representation and detection, which is crucial in applications such as fraud detection and medical diagnosis. They compared different metrics across datasets of varying statistical properties and demonstrated that distance functions play a vital role in improving classification reliability under skewed class distributions.

A comprehensive empirical evaluation of distance metrics for KNN was presented by Chomboon *et al.* [4]. The authors compared 11 distance measures, including Euclidean, Manhattan, Mahalanobis, and Hamming distances, using eight synthetic datasets with varying feature distributions. Their experimental results concluded that no single distance metric is universally optimal, and performance depends heavily on dataset characteristics such as dimensionality, noise, and class overlap. This study provides strong evidence that distance metric selection must be tailored to the nature of the problem and data structure.

From the above studies, it is evident that distance metrics play a critical role in classification accuracy, particularly for KNN and similarity-based models. However, most existing works focus on specific application domains, such as medical signals, text grading, or imbalance learning. There is still a research gap in developing a generalized comparative framework to

evaluate distance metrics across diverse real-world datasets, which motivates the present study.

III. MATHEMATICAL FOUNDATIONS OF DISTANCE METRICS FOR SIMILARITY MEASUREMENT

Distance metrics are widely employed in machine learning to quantify the degree of similarity or dissimilarity between data instances. These measures constitute the foundation of numerous algorithms, particularly in clustering, classification, nearest-neighbor-based learning and dimensionality reduction. The choice of an appropriate distance metric significantly influences model performance, as different metrics capture different geometric and statistical characteristics of the data. This section presents a concise discussion of commonly used distance metrics along with their properties, advantages and limitations.

Euclidean Distance

Euclidean distance is one of the most fundamental and extensively used metrics for measuring the straight-line distance between two points in a multidimensional space.

Given two vectors ($A = (x_1, y_1, \dots, x_n)$) and ($B = (x_2, y_2, \dots, x_n)$), the Euclidean distance is defined as:

$$d(x, y) = \sqrt{\sum_{i=1}^n (y_i - x_i)^2}$$

This metric treats all dimensions equally and is best suited for continuous numerical data. Due to its geometric interpretability and computational simplicity, it is frequently used in clustering and classification algorithms. However, Euclidean distance is highly sensitive to scale variations and requires feature normalization. Additionally, its effectiveness decreases in high-dimensional spaces due to the curse of dimensionality, and it is vulnerable to the influence of outliers.

Advantages:

- Simple and intuitive geometric interpretation
- Efficient for low-dimensional continuous datasets
- Computationally inexpensive

Limitations:

- Sensitive to feature scaling
- Not robust against outliers
- Performance degrades in high-dimensional spaces

Manhattan Distance

Manhattan distance, also known as the L1 norm or taxicab distance, measures the distance between two points by summing the absolute differences of their corresponding coordinates:

$$\text{Mdist} = |x_2 - x_1| + |y_2 - y_1|$$

Unlike Euclidean distance, Manhattan distance computes paths along axis-aligned directions, making it more suitable for grid-based or sparse data environments. It is relatively more robust to outliers as it does not square the differences.

Advantages:

- Less sensitive to outliers
- Performs better in high-dimensional and sparse feature spaces
- Simple and computationally efficient

Limitations:

- Less intuitive in continuous or non-grid spaces
- Not optimal when features exhibit strong correlations

Minkowski Distance

Minkowski distance is a generalized distance metric that encompasses Euclidean and Manhattan distances as special cases. It is defined as:

$$D(x, y) = \left(\sum_{i=1}^n |x_i - y_i|^p \right)^{\frac{1}{p}}$$

where $p \geq 1$ is a parameter that controls the metric behavior. When $p = 1$, it reduces to Manhattan distance and when $p = 2$, it becomes Euclidean distance.

This metric provides flexibility in tuning the sensitivity of the distance measure based on data characteristics. However, selecting an optimal value of (p) requires domain knowledge and experimental validation.

Advantages:

- Generalized framework covering multiple distance measures
- Flexible for different dataset distributions
- Adaptable to various applications

Limitations:

- Requires careful parameter tuning
- Computationally heavier for large p values
- Sensitivity to outliers increases with higher p

Hamming Distance

Hamming distance is used to measure dissimilarity between two vectors or strings of equal length by counting the number of positions at which the corresponding elements differ:

$$d(x, y) = \frac{1}{n} \sum_{n=1}^{n=n} |x_i - y_i|$$

where $|x_i - y_i|$ is an indicator function.

This metric is particularly suitable for binary, categorical, or discrete data. It is extensively applied in text mining, bioinformatics, and error detection systems.

Advantages:

- Highly effective for binary and categorical data
- Simple and computationally efficient
- Useful in error detection and pattern matching

Limitations:

- Not applicable to continuous-valued data
- Requires equal-length vectors

IV. COMPARATIVE ANALYSIS AND DISCUSSION**A. Comparative Performance of Distance Metrics**

The selection of an appropriate distance metric significantly influences the performance of similarity-based learning algorithms, particularly in classification tasks. In this study, four widely used distance metrics - **Euclidean, Manhattan, Minkowski, and Hamming** - were evaluated using three performance measures: **Overall Accuracy, Balanced Accuracy, and Accuracy Adjusted for Class Imbalance**.

The obtained results are tabulated below:

Distance Metric	Overall Accuracy (%)	Balanced Accuracy (%)	Imbalanced Adjusted Accuracy (%)
Euclidean	95.56	95.56	95.56
Manhattan	93.33	92.31	93.33
Minkowski	84.44	82.05	84.44
Hamming	75.56	75.03	75.56

Table 1: Comparative performance of Distance metrics

From the results, **Euclidean distance exhibits the highest accuracy across all three evaluation metrics**, indicating its strong suitability for the given dataset. Its geometric nature effectively captures the underlying spatial relationships in the numerical feature space.

The **Manhattan distance**, although slightly lower in performance than Euclidean, still demonstrates competitive accuracy. This suggests that Manhattan distance performs well in capturing absolute differences between features and may outperform Euclidean distance in scenarios involving high-dimensional or sparse datasets.

The **Minkowski distance**, despite its mathematical flexibility, shows comparatively lower performance. This implies that the chosen value of the Minkowski parameter p may not optimally suit the dataset structure, highlighting the importance of careful parameter tuning.

The **Hamming distance** yields the lowest accuracy values. This can be attributed to its design for binary or categorical data. When applied to continuous or mixed numerical datasets, it fails to capture meaningful similarity relationships effectively.

B. Graph-Based Performance Analysis

To complement the numerical analysis, performance graphs were generated for:

1. **Overall Accuracy**
2. **Balanced Accuracy**
3. **Imbalanced Accuracy**

1. Overall Accuracy Graph Analysis

The Overall Accuracy graph clearly shows that the **Euclidean distance metric dominates**, achieving the peak accuracy of **95.56%**. Manhattan follows closely at **93.33%**, while Minkowski and Hamming display a significant decline. The steep drop in Hamming distance confirms its limited applicability for non-binary datasets.

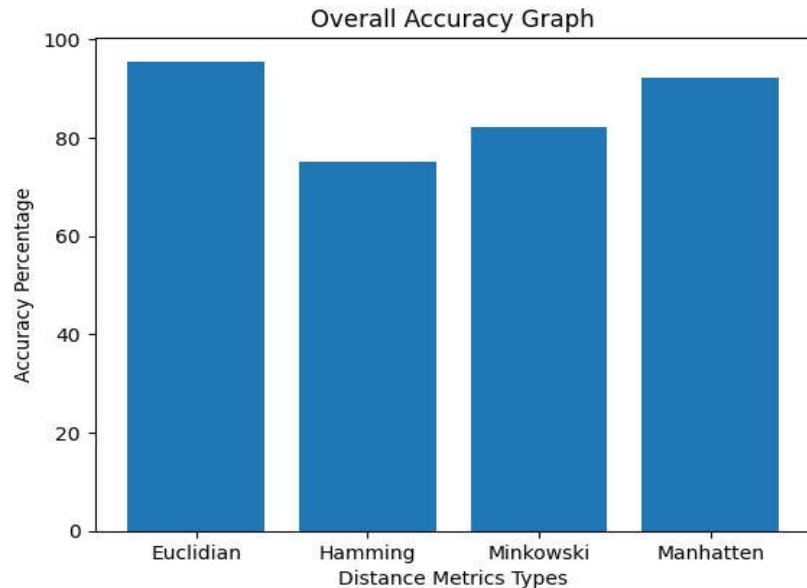


Figure 1: Overall Accuracy of various metrics

2. Balanced Accuracy Graph Analysis

The Balanced Accuracy graph further validates the consistency of Euclidean distance, maintaining the highest value at **95.56%**. Since balanced accuracy accounts for class-wise performance, this indicates that Euclidean distance performs uniformly across both majority and minority classes. The drop observed in Manhattan and Minkowski highlights their reduced robustness in handling class imbalance.

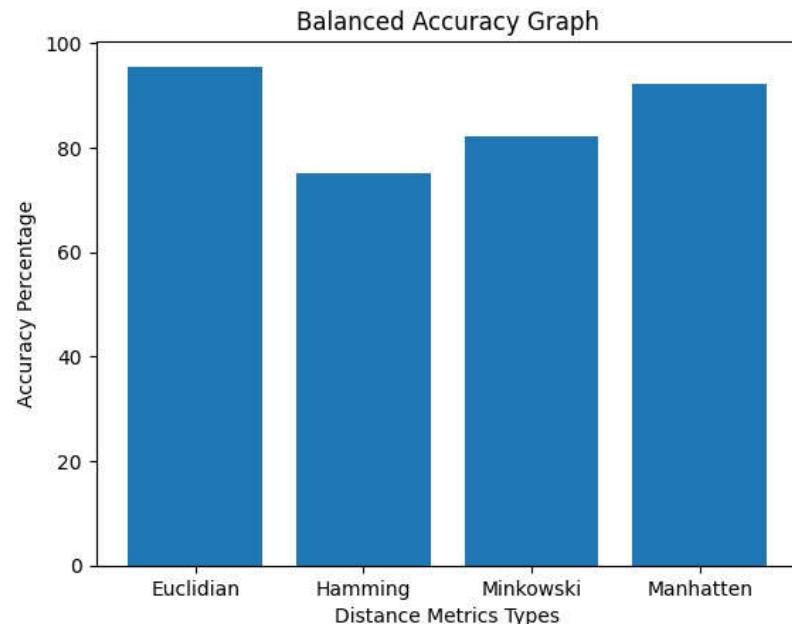


Figure 2: Balanced Accuracy of various metrics

3. Imbalanced Accuracy Graph Analysis

In imbalanced datasets, traditional accuracy measures can be misleading. However, Euclidean distance continues to maintain superior performance even after adjustment for class imbalance. This indicates that it does not overfit the majority class and effectively captures minority class patterns. Manhattan performs moderately well, while Minkowski and Hamming suffer significant performance degradation.

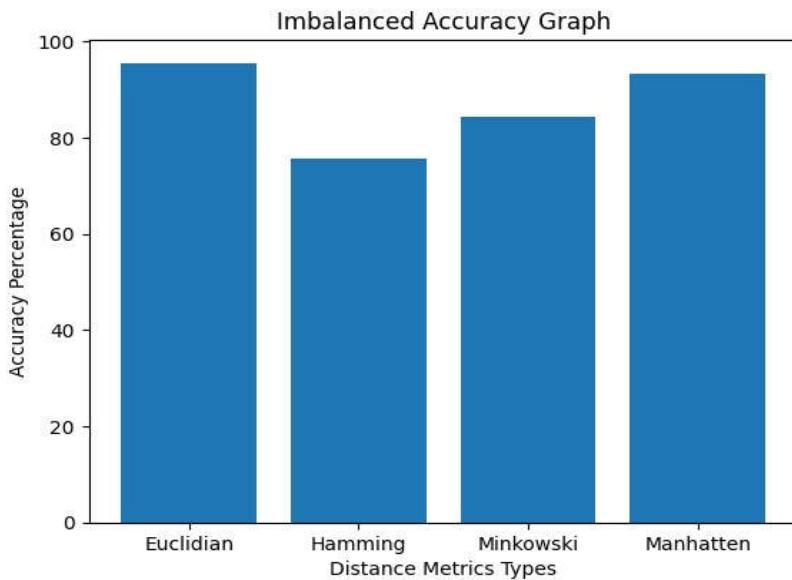


Figure 2: Imbalanced Accuracy of various metrics

C. Discussion

The experimental analysis confirms that **no single distance metric is universally optimal**, but in the context of the present dataset and problem domain, **Euclidean distance emerges as the most effective choice**. Its strong performance across overall, balanced, and imbalanced accuracy metrics demonstrates its reliability in both balanced and skewed class distributions.

However, it is important to note that **Manhattan distance may outperform Euclidean distance under specific conditions** such as:

- High-dimensional spaces
- Sparse data distributions
- Datasets with outliers

The lower performance of Minkowski distance suggests that its parameter p must be carefully tuned to suit the data characteristics. Similarly, the poor performance of Hamming distance highlights its unsuitability for continuous datasets and reinforces its application primarily to binary or categorical domains.

Overall, the analysis confirms that **the choice of distance metric should be guided by dataset structure, feature type, and distribution properties rather than accuracy alone**. Future work could explore adaptive or hybrid distance measures to further improve performance across diverse data scenarios.

V. CONCLUSION

This study presented a comparative evaluation of four widely used distance metrics — Euclidean, Manhattan, Minkowski, and Hamming — in the context of similarity-based classification. The performance of these metrics was analyzed using three reliable evaluation measures: overall accuracy, balanced accuracy, and accuracy adjusted for class imbalance. The experimental results demonstrate that the **Euclidean distance metric consistently achieved the highest performance across all evaluation criteria**, indicating its suitability for datasets where numerical features exhibit meaningful geometric relationships.

While Manhattan distance showed competitive performance and may outperform Euclidean distance in specific scenarios involving high dimensionality or sparse feature spaces, Minkowski and Hamming distances exhibited comparatively lower effectiveness for the dataset under consideration. In particular, the poor performance of Hamming distance highlights its limitation when applied to continuous numerical data rather than categorical or binary features.

The findings of this study confirm that the selection of a distance metric should be driven by the characteristics of the dataset and the underlying problem domain rather than a generalized assumption of optimality. Therefore, careful consideration of data type, distribution, and variability is essential when applying distance-based machine learning models.

VI. FUTURE RESEARCH DIRECTIONS

To further enhance and extend this work, the following future research directions are recommended:

1. Adaptive Distance Metric Learning

Future studies can explore dynamic or adaptive distance metric learning approaches where the distance function evolves based on data distribution and learning feedback.

2. Incorporating Weighted Distance Measures

Introducing feature weighting schemes into existing distance metrics can help prioritize more important attributes and potentially improve classification accuracy.

3. Application on Large-Scale Real-World Datasets

The proposed analysis can be extended to large-scale and high-dimensional real-world datasets such as medical diagnostics, fraud detection, or sensor data.

4. Hybrid Distance Models

Developing hybrid distance measures by combining Euclidean and Manhattan metrics can enhance performance for complex, heterogeneous datasets.

5. Evaluation on Deep Learning Feature Spaces

Testing the performance of distance metrics on deep feature embeddings generated by neural networks can provide more insights into their applicability in modern AI systems.

6. Robustness Against Noise and Outliers

Further research can analyze how distance metrics behave under noisy and adversarial conditions, and propose more robust alternatives.

7. Cross-Domain Validation

Applying this methodology across multiple domains (text data, image data, medical data, etc.) will enhance the generalizability of the proposed conclusions.

References

- [1] M. M. Deza and E. Deza, *Encyclopedia of Distances*, 4th ed. Berlin, Germany: Springer, 2013.
- [2] K. Chomboon, P. Chujai, P. Teerarassamee, K. Kerdprasop, and N. Kerdprasop, "An Empirical Study of Distance Metrics for k-Nearest Neighbor Algorithm," in Proc. 3rd Int. Conf. Ind. Appl. Eng., Kitakyushu, Japan, 2015, pp. 280–286.
- [3] K. Chomboon, P. Chujai, P. Teerarassamee, K. Kerdprasop, and N. Kerdprasop, "An empirical study of distance metrics for k-nearest neighbor algorithm," in *Proc. 3rd International Conference on Industrial Application Engineering*, Jan. 2015, pp. 280–285.
- [4] C. W. Yean, B. S. Zheng, W. Khairunizam, S. A. Bakar, M. I. Omar, Z. M. Razlan, M. Murugappan, and Z. Ibrahim, "Analysis of the distance metrics of KNN classifier for EEG signal in stroke patients," *Proc. Int. Conf. Advanced Engineering and Technology*, School of Mechatronic Engineering, Universiti Malaysia Perlis, 2018.
- [5] O. E. Oduntan, I. Adeyanju, A. S. Falohun, and O. Obe, "A comparative analysis of Euclidean distance and cosine similarity measure for automated essay-type grading," *ARPJ Journal of Engineering and Applied Sciences*, vol. 13, no. 14, pp. 4578–4584, July 2018.
- [6] C. W. Yean, B. S. Zheng, W. Khairunizam, S. A. Bakar, M. I. Omar, Z. M. Razlan, M. Murugappan, and Z. Ibrahim, "Analysis of the Distance Metrics of KNN Classifier for EEG Signal in Stroke Patients," IEEE International Conference on [specific conference details], 2018.
- [7] Md. Mahin, Md. J. Islam, A. Khatun, and B. C. Debnath, "Comparative study of distance metric learning to find sub-categories of minority class from imbalance data," *Int. J. Computer Science and Information Security*, vol. 16, no. 12, pp. 125–132, Dec. 2018.
- [8] Mahin, M., Islam, M. J., Khatun, A., & Debnath, B. C. (2018). A comparative study of distance metric learning to find sub-categories of minority class from imbalance data. Proceedings of the International Conference on Innovation in Engineering and Technology (ICIET), 27-29, Dhaka, Bangladesh. IEEE, December 2018.
- [9] J. Błaszczyński and J. Stefanowski, "Local data characteristics in learning classifiers from imbalanced data," in *Advances in Data Analysis with computational Intelligence Methods*. Springer, 2018, pp. 51–85.
- [10] P.-N. Tan, M. Steinbach, and V. Kumar, *Introduction to Data Mining*. Boston, MA, USA: Pearson, 2019.
- [11] C. C. Aggarwal, "An introduction to distance metrics and similarity measures," in *Recommender Systems*, Cham, Switzerland: Springer, 2020, pp. 53–74.
- [12] Eva Blanco-Mallo et. Al., "Do all roads lead to Rome? Studying distance measures in the context of machine learning", Pattern Recognition – ScienceDirect, 2023.
- [13] Yifeng Zhao and Liming Yang "Distance metric learning based on the class center and nearest neighbor relationship", Journal of Neural Networks, ScienceDirect, Vol. 164, July 2023.
- [14] Nicolás García Trillo et. Al., Fermat Distances: Metric Approximation, Spectral Convergence, and Clustering Algorithms, Journal of Machine Learning Research 25 (2024) 1-65.
- [15] Atena Jalali Mojahed ET. AL., "Supervised Density-Based Metric Learning Based on Bhattacharya Distance for Imbalanced Data Classification Problems", Big Data and Cognitive Computing, MDPI, August 2024.