

Effects of Hydrogel Over Transdermal Drug Delivery System: Challenges and Future Perspective

Dharmesh Kumar¹ Bhawna Chaudhary², Sunaina Kumari³, Sheenam Iqbal¹, *Rahul Kumar Singh¹

¹School of Pharmacy, Mangalayatan University, Aligarh-202146, [U.P], India.

²Orlean College of Pharmacy, Greater Noida, [U.P]India.

³ Institute of Pharmaceutical Research, GLA University, NH-2 Mathura, 281406 [U.P], India.

***Corresponding Author Address: Dr.Rahul Kumar Singh**

Department of Pharmaceutics, School of Pharmacy, Mangalayatan University

ABSTRACT

Transdermal drug delivery offers a compelling, patient-centric alternative to conventional drug administration, bypassing first-pass metabolism and enhancing patient compliance through consistent drug levels and non-invasive application. While successful for certain drugs like nitroglycerin and scopolamine, the stratum corneum, the skin's outermost layer, presents a significant barrier to most therapeutic agents. Hydrogels have emerged as highly promising biomaterials to overcome this challenge. These 3D cross-linked polymeric networks absorb large amounts of water, offering excellent biocompatibility, tunable mechanical properties, and flexibility, making them ideal for direct skin application. They maintain a moist skin environment, aiding stratum corneum hydration and drug diffusion, and serve as versatile drug reservoirs for controlled and sustained release. Hydrogels facilitate the delivery of both small molecules and macromolecules previously unsuitable for transdermal administration. This review provides a comprehensive overview of hydrogel-based TDD, covering fundamental properties, classification (natural, synthetic, hybrid, and smart hydrogels), synthesis, and characterization techniques. It delves into drug release mechanisms (diffusion, swelling, degradation, and stimuli-responsive) and strategies to enhance skin permeation, including integration with physical enhancement techniques. Finally, it addresses existing challenges in development and clinical translation and outlines future perspectives and emerging trends in this dynamic field.

Keywords:

Nitroglycerine, pH responsive, skin permeation, bio-compatibility

Introduction

Transdermal drug delivery (TDD) represents a highly attractive and patient-centric approach for administering therapeutic agents through the skin, circumventing many limitations associated with conventional drug delivery routes. Since its inception, TDD has garnered significant attention due to its myriad advantages, including the avoidance of first-pass metabolism, improved patient compliance by eliminating the need for frequent oral dosing or painful injections, the ability to maintain consistent plasma drug levels over extended periods, and the convenient termination of drug therapy simply by removing the patch [1]. This non-invasive nature further enhances patient comfort and adherence, making it particularly suitable for chronic conditions or in situations where oral administration is problematic. Notable successes in TDD include the delivery of nitroglycerin for angina, scopolamine for motion sickness, various hormonal therapies (e.g., estrogen, testosterone), and nicotine for smoking cessation. These established applications underscore the therapeutic potential and market success of properly designed transdermal systems [2].

Despite these compelling advantages, the skin, particularly the outermost layer—the stratum corneum (SC)—presents a formidable biological barrier. This highly organized lipid-protein matrix, often described as a "brick and mortar" structure (corneocytes as bricks, lipid matrix as mortar), acts as the body's primary defense against external insults and regulates transepidermal water loss. Simultaneously, it severely limits the permeation of most exogenous substances, including therapeutic drugs. Consequently, only a limited number of drugs with specific physicochemical properties (e.g., low molecular weight generally <500 Da, adequate lipophilicity [log P typically between 1 and 3], and a relatively low melting point) can effectively penetrate the skin in therapeutically relevant concentrations via passive diffusion [3-5]. This inherent barrier function poses a significant challenge, restricting the range of drugs amenable to conventional passive transdermal delivery and necessitating innovative strategies to enhance drug permeation.

In recent decades, significant advancements in materials science and pharmaceutical technology have led to the exploration of novel drug delivery platforms designed to overcome the skin barrier. Among these, hydrogels have emerged as a particularly promising class of biomaterials for TDD systems. Hydrogels are three-dimensional, cross-linked polymeric networks capable of absorbing and retaining large amounts of water or biological fluids within their structure without dissolving[6]. Their unique properties, such as high-water content (often exceeding 90% by weight), excellent biocompatibility, tunable mechanical properties resembling soft biological tissues, and inherent flexibility, make them ideal candidates for direct application to the skin. These features allow hydrogels to maintain a moist environment at the skin surface, which can aid in stratum corneum hydration and potentially facilitate drug diffusion. Furthermore, the porous network of hydrogels provides a versatile reservoir for drug loading and offers the potential for controlled and sustained drug release kinetics, which is crucial for maintaining therapeutic drug levels over extended periods. Their ability to adhere to the skin surface, provide a protective layer, and minimize irritation also contributes to their suitability [7-8].

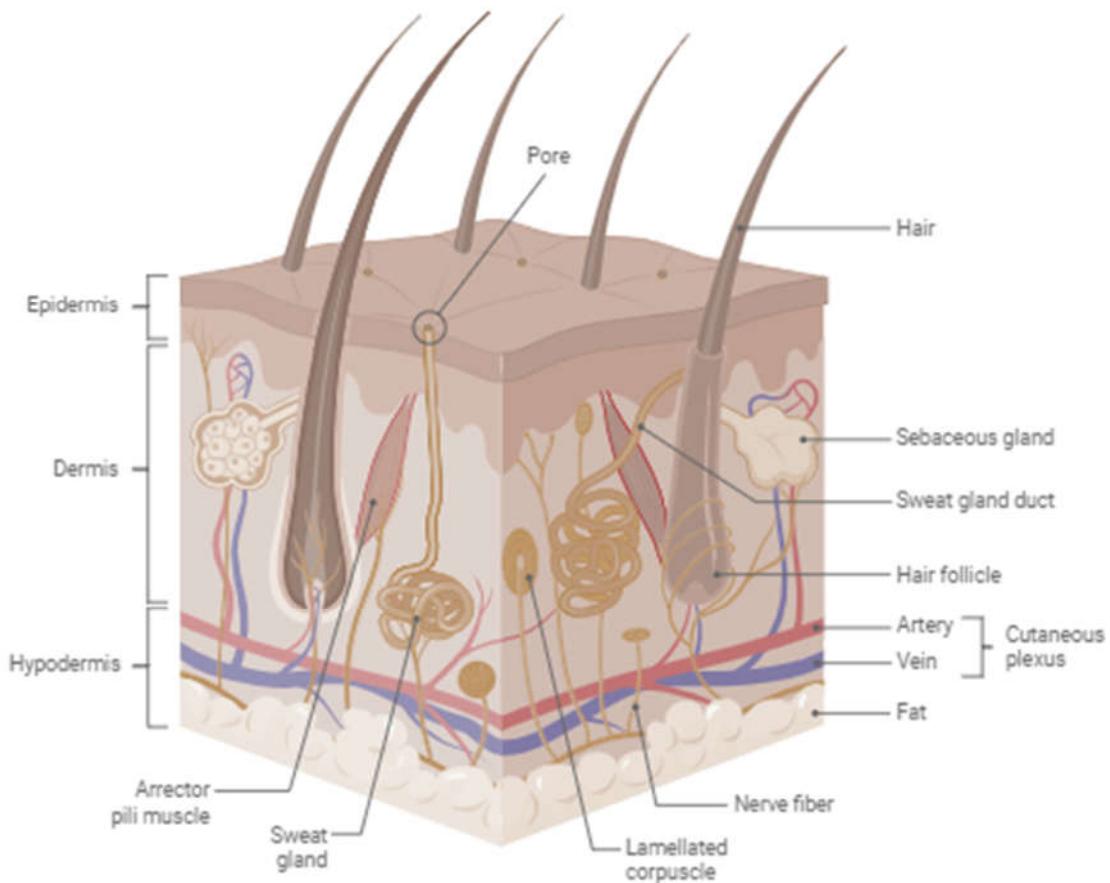
The integration of hydrogels into transdermal patches, topical gels, and advanced systems like microneedle-based devices has opened new avenues for delivering both small molecule drugs and, increasingly, macromolecules like peptides, proteins, and even vaccines, which were traditionally considered unsuitable for transdermal administration due to their large size and hydrophilicity as shown in **Fig.1**.

Fig.1. Hydrogel film

This review aims to provide a comprehensive overview of the current state-of-the-art in hydrogel-based transdermal drug delivery systems. We will delve into the fundamental properties of hydrogels relevant to their application in TDD, categorize different types of hydrogels based on their origin and responsiveness, and discuss various synthesis and characterization techniques critical for their development [9-10]. A significant portion of this review will be dedicated to exploring the mechanisms of drug release from hydrogels and, crucially, the strategies employed to overcome the skin barrier, including the innovative combination of hydrogels with physical permeation enhancement techniques. Furthermore, we will highlight key therapeutic applications across various disease areas, critically assess the existing challenges in their development and clinical translation, and finally, offer perspectives on future directions and emerging trends in this dynamic field. The goal is to provide a holistic understanding of hydrogels' role in advancing transdermal drug delivery, from fundamental science to potential clinical impact.

Fundamentals of Skin Permeation and Barrier Function

Understanding the intricate structure and formidable barrier function of the skin is paramount for designing effective transdermal drug delivery systems. The skin, the largest organ of the human body, serves as a protective interface between the internal milieu and the external environment. Its primary role is to prevent the entry of harmful substances (e.g., toxins, pathogens) and excessive water loss, while also regulating body temperature and facilitating sensory input [11].


Structure of the Skin

The skin is broadly composed of three primary layers: the epidermis, the dermis, and the hypodermis shown in **Fig.2**.

- **Epidermis:** This is the outermost layer of the skin, characterized by its stratified squamous epithelial tissue. It is avascular, meaning it does not contain blood vessels, and receives nutrients via diffusion from the underlying dermis [12]. The epidermis is further subdivided into five distinct layers, from superficial to deep:
 - **Stratum Corneum (SC):** This is the outermost layer of the epidermis, typically 10-20 μm thick, and represents the primary barrier to drug permeation. It consists of dead, flattened, anucleated cells called corneocytes (the "bricks"), embedded in a complex intercellular lipid matrix (the "mortar").

These lipids, primarily ceramides (50%), cholesterol (25%), and free fatty acids (15%), are arranged in highly ordered lamellar bilayers, creating a tortuous pathway for molecules. The low water content and highly structured nature of the SC contribute significantly to its impermeability.

- **Stratum Lucidum:** A thin, clear layer found only in thick skin (palms of hands and soles of feet), lying superficial to the stratum granulosum.
- **Stratum Granulosum:** Characterized by granular cells containing keratohyalin granules and lamellar bodies, which release the lipids that form the intercellular lipid matrix of the SC.
- **Stratum Spinosum:** The "prickly layer" where keratinocytes are connected by desmosomes, providing structural integrity. Langerhans cells (immune cells) are also found here.
- **Stratum Basale (or Stratum Germinativum):** The deepest epidermal layer, composed of a single layer of cuboidal or columnar cells that undergo continuous mitosis, producing new keratinocytes that migrate upwards. Melanocytes (pigment-producing cells) and Merkel cells (touch receptors) are also located here.
- **Dermis:** Lying beneath the epidermis, the dermis is a much thicker layer (1-4 mm) composed primarily of connective tissue, including collagen and elastin fibers, which provide strength and elasticity to the skin. The dermis is richly vascularized, containing blood vessels, lymphatic vessels, nerves, hair follicles, sebaceous glands, and sweat glands. Drugs that successfully traverse the epidermis enter the dermis, where they can be absorbed into the systemic circulation via capillaries [13].
- **Hypodermis (Subcutis/Subcutaneous Tissue):** This is the deepest layer of the skin, primarily composed of adipose tissue (fat) and loose connective tissue. It provides insulation, shock absorption, and stores energy. It also contains larger blood vessels and nerves. While not directly involved in drug permeation across the skin, it influences overall drug distribution and absorption [14].

Fig. 2. Skin anatomy

Stratum Corneum: The Primary Barrier

As highlighted, the stratum corneum is the rate-limiting step for most transdermal drug delivery. Its "brick and mortar" model explains its remarkable barrier properties. The corneocytes are protein-rich, hydrophilic structures, while the intercellular lipid matrix is highly lipophilic. This dual nature means that for a drug to passively permeate the SC, it must possess a delicate balance of hydrophilicity and lipophilicity. Highly hydrophilic drugs struggle to partition into the lipid matrix, while highly lipophilic drugs may partition well but struggle to exit into the more aqueous viable epidermis and dermis [15-16].

Pathways of Drug Permeation

Drugs can traverse the stratum corneum and viable epidermis via three main pathways:

- **Transcellular (or Intracellular) Pathway:** This involves the drug passing directly through the corneocytes and their associated lipid envelopes. This pathway requires the drug to alternately partition into and diffuse through both the lipid and aqueous domains within the corneocytes. It is generally less favored for most drugs due to the tortuosity and lipid-rich nature of the corneocyte envelope [17-18].
- **Intercellular Pathway:** This is considered the primary pathway for the majority of topically applied drugs. The drug diffuses through the continuous, tortuous lipid lamellae network between the corneocytes. Molecules must partition into the lipid

bilayers and then diffuse through this lipophilic pathway. The ordered nature of these lipids presents a significant resistance [19].

- **Transappendageal Pathway (or Shunt Pathway):** This pathway involves permeation through the hair follicles, sebaceous glands, and sweat ducts. While these appendages only constitute a small fraction (typically <0.1%) of the total skin surface area, they can provide a faster, less resistant route, particularly for larger or more hydrophilic molecules. However, due to their limited surface area, their contribution to overall steady-state flux for most small molecules is generally considered minor, although they might be significant for initial rapid absorption or for very large molecules (e.g., nanoparticle) [20]

Factors Affecting Skin Permeability

Several factors, related to both the drug and the delivery system, influence the rate and extent of drug permeation through the skin:

- **Drug Properties [21]:**
 - **Molecular Weight:** Generally, smaller molecules (<500 Da) permeate more easily.
 - **Lipophilicity (log P):** An optimal balance is required; typically, log P values between 1 and 3 are ideal for passive diffusion. Extremely hydrophilic or lipophilic drugs have poor skin permeability.
 - **Ionization State (pKa):** Only the un-ionized form of a drug can effectively partition into and permeate through the lipid-rich stratum corneum. The pH of the formulation and the skin surface influences this.
 - **Concentration:** Higher drug concentration in the formulation generally leads to a higher concentration gradient, driving increased permeation (Fick's Law of Diffusion).
 - **Melting Point:** Drugs with lower melting points tend to have higher solubility and thus higher thermodynamic activity, favoring skin permeation.
- **Vehicle/Formulation Properties [22]:**
 - **Composition:** The excipients in the formulation (solvents, penetration enhancers) significantly impact drug solubility, release from the vehicle, and interaction with the skin.
 - **pH:** Influences the ionization state of the drug and can affect skin hydration and integrity.
 - **Viscosity:** Affects spreadability and drug release from the formulation.
 - **Hydration Effect:** Occlusive formulations (like many hydrogels) can hydrate the stratum corneum, increasing its permeability.
- **Skin Condition [23]:**
 - **Site of Application:** Skin thickness, density of hair follicles, and lipid content vary across different body sites (e.g., scrotal skin > facial skin > forearm skin > plantar skin).
 - **Age:** Neonatal and elderly skin tend to be more permeable than adult skin.
 - **Pathological Conditions:** Compromised skin barrier (e.g., eczema, burns, psoriasis) significantly increases permeability, which can be advantageous for local treatment but risky for systemic exposure.
 - **Hydration Level:** Hydrated skin is generally more permeable.
 - **Temperature:** Increased skin temperature can enhance permeability by increasing blood flow and lipid fluidity.

Classification and Synthesis of Hydrogels for TDD

The versatility of hydrogels stems from the wide array of polymers and cross-linking chemistries available, allowing for precise tailoring of their properties for specific biomedical applications, including transdermal drug delivery [24]. Hydrogels can be broadly classified based on their origin (natural, synthetic, or hybrid) and their responsiveness to external stimuli described in **Table 1**.

1. Classification Based on Origin

The choice between natural and synthetic polymers often dictates the mechanical, degradation, and biocompatibility profiles of the resulting hydrogel.

1.1. Natural Polymer-Based Hydrogels These hydrogels are derived from naturally occurring polymers, offering inherent advantages such as excellent biocompatibility, biodegradability, and often low immunogenicity. However, they can suffer from variable purity, mechanical weakness, and batch-to-batch variability, which can complicate their scale-up and regulatory approval [25].

- **Chitosan:** A linear polysaccharide derived from chitin, composed of randomly distributed β -(1→4)-linked D-glucosamine (deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit). Biocompatible, biodegradable, non-toxic, mucoadhesive, cationic (due to amino groups), pH-responsive (swells and dissolves at acidic pH, precipitates at neutral/basic pH), and possesses intrinsic antimicrobial and wound-healing properties. Its cationic nature allows for electrostatic interactions with negatively charged cell membranes and drugs [26]. Enhances drug permeability by transiently opening tight junctions (intercellular pathway) due to its cationic charge; provides good adhesion to the skin; promotes wound healing for damaged skin; forms stable gels. Limited mechanical strength when used alone, solubility issues at neutral pH unless chemically modified, batch-to-batch variability in degree of deacetylation and molecular weight. Used in patches for delivering NSAIDs (e.g., ibuprofen, diclofenac), local anesthetics (e.g., lidocaine), and even insulin (in conjunction with permeation enhancers) due to its mucoadhesive and permeation-enhancing properties[27-30].
- **Alginate:** An anionic polysaccharide derived from brown seaweeds, composed of β -D-mannuronic acid (M) and α -L-guluronic acid (G) residues. Biocompatible, biodegradable, non-toxic, forms gels readily in the presence of divalent cations like Ca^{2+} (ionically cross-linked via "egg-box" model)[31]. Easy to formulate into stable gels; provides sustained drug release profiles; excellent water absorption capacity, contributing to skin hydration; non-irritating. Mechanical stability can be moderate; prone to degradation by enzymes; sensitivity to ionic strength changes; can be too brittle if not properly formulated. Commonly used for topical wound dressings and for the delivery of anti-inflammatory drugs (e.g., diclofenac sodium), local anesthetics, and even macromolecular drugs [32-34].
- **Hyaluronic Acid (HA):** A linear, non-sulfated glycosaminoglycan, naturally present in the extracellular matrix of connective tissues. High water retention capacity (hydrophilic), viscoelastic, biocompatible, non-immunogenic, biodegradable (by hyaluronidase)[35]. HA has receptors (e.g., CD44) on cell surfaces. Excellent skin hydration, promotes skin regeneration and wound healing, can participate in receptor-mediated uptake for targeted delivery, good tissue integration. High cost for

pharmaceutical grade, relatively rapid enzymatic degradation in vivo unless chemically modified or cross-linked, poor mechanical strength for unsupported patches [36]. Used for cosmetic applications, delivery of corticosteroids, growth factors, and drugs for dermatological conditions, often as a hydrating component or for its role in skin repair [37].

- **Gelatin/Collagen:** Proteins derived from animal collagen, composed of various amino acids. Biocompatible, biodegradable, good cell adhesion properties, thermo-responsive (gelatin undergoes sol-gel transition), readily modifiable. Excellent adhesion to skin, promotes tissue repair and regeneration (especially collagen), versatile for various cross-linking methods. Potential for batch-to-batch variability, animal origin may raise ethical concerns or lead to potential immune reactions (though purified forms are less immunogenic), mechanical weakness [38] Used in wound dressings, hemostatic agents, and drug-loaded films/patches for controlled release of peptides, growth factors, or antibiotics [39].

1.2. Synthetic Polymer-Based Hydrogels These hydrogels are synthesized from monomers, offering superior control over their chemical composition, molecular weight, architecture, and thus, their physical and mechanical properties. This allows for excellent reproducibility, greater design flexibility, and often enhanced mechanical strength and stability compared to natural polymers. However, they may present challenges regarding biocompatibility and biodegradability, which need careful assessment [40].

- **Poly(ethylene glycol) (PEG):** A widely used, hydrophilic, non-ionic polyether. Highly biocompatible, non-toxic, low immunogenicity, highly soluble in water, forms flexible polymer networks. Its "stealth" properties reduce protein adsorption. Excellent biocompatibility, forms stable and flexible hydrogels, can be easily functionalized for conjugation, reduces irritation, good solvent for many drugs. Generally non-biodegradable (unless low MW and excreted), mechanical strength can be low without cross-linking or blending, high diffusivity can lead to burst release⁴⁰. Widely used as a base for many transdermal patches, as a component in thermosensitive gels, or as a building block for more complex networks. Used for various small molecule drugs and even biologics [41-42].
- **Poly(vinyl alcohol) (PVA):** A water-soluble synthetic polymer with excellent film-forming properties. Biocompatible, non-toxic, good mechanical strength, high swelling capacity, forms physical gels through hydrogen bonding or chemical cross-linking. Robust, good drug loading capacity, ease of preparation (e.g., freeze-thaw cycles for physical cross-linking), good adhesion to skin [43-44]. Relatively slow biodegradation, can be brittle when dry, less responsive to stimuli compared to other synthetic polymers. Used as the matrix for transdermal patches, wound dressings, and topical drug delivery systems for pain management (e.g., NSAIDs, opioids) and dermatological conditions [45].
- **Polyacrylates (e.g., Carbopol, Poly (acrylic acid) [PAA]):** Polymers derived from acrylic acid or its derivatives, often containing carboxylic acid groups. pH-responsive (swells at higher pH due to deprotonation of carboxylic groups), high swelling capacity, strong mucoadhesive properties. Excellent thickening and gelling agents, widely used in topical formulations, good drug retention and sustained release, can enhance permeation due to mucoadhesion and potential interaction with skin components [46] can be sticky, less flexible for patches, sensitivity to ionic strength, swelling can be too rapid or extreme. Common excipient in dermatological gels and creams (e.g., for anti-inflammatory drugs, local anesthetics, antifungals) [47].

- **Poly(N-isopropylacrylamide) (PNIPAM):** A classic example of a thermosensitive polymer. Exhibits a Lower Critical Solution Temperature (LCST) around 32-34°C (close to body temperature). Below LCST, it is swollen and hydrophilic; above LCST, it rapidly collapses and becomes hydrophobic, expelling water. Enables "on-demand" or pulsatile drug release triggered by body temperature, allowing for controlled drug delivery based on physiological cues [48]. Can be designed to switch between drug retention and release states. Potential cytotoxicity concerns (though often overcome by copolymerization or functionalization), rapid volume changes can cause stress, issues with long-term stability and reproducibility of LCST. Explored for controlled release of therapeutic peptides, hormones, and pain medications, where precise control over release kinetics is desired [49-51].

1.3. Hybrid/Semi-Synthetic Hydrogels These combine natural and synthetic polymers to leverage the advantages of both, while mitigating their individual limitations. This approach allows for fine-tuning of mechanical properties, biodegradability, biocompatibility, and responsiveness. Examples include chitosan-PEG copolymers, hyaluronic acid-PVA blends, or hydrogels with integrated inorganic nanoparticles [52].

2. Classification Based on Responsiveness (Smart Hydrogels)

Stimuli-responsive or "smart" hydrogels undergo reversible or irreversible changes in their physical or chemical properties (e.g., swelling, mechanical strength, porosity, degradation) in response to specific external stimuli. This responsiveness makes them highly attractive for controlled and on-demand drug delivery [53].

2.1. Non-Responsive Hydrogels: These hydrogels exhibit relatively constant swelling and release profiles under normal physiological conditions. Their drug release is primarily governed by diffusion and/or polymer degradation. They are simpler to design and are suitable for sustained, continuous delivery [54].

2.2. Stimuli-Responsive/Smart Hydrogels: These systems offer dynamic control over drug release.

- **pH-responsive:** Contain ionizable groups (e.g., carboxylic acids, amines) that protonate or deprotonate in response to changes in pH. This alters the charge density within the polymer network, leading to changes in swelling. Polymers with carboxylic acid groups (e.g., PAA) swell in basic environments (deprotonated -COO- repulsion), while polymers with amine groups (e.g., chitosan) swell in acidic environments (protonated -NH3+ repulsion). Skin surface pH is typically acidic (4.5-5.5), while deeper tissues are closer to neutral (7.4). Pathological skin conditions (e.g., wounds, infections) can have higher pH. This allows for targeted or triggered release [55-57].
- **Temperature-responsive:** Exhibit a critical solution temperature (CST) at which they undergo a phase transition. Polymers like PNIPAM (LCST, Lower Critical Solution Temperature) become hydrophobic and deswell above their LCST. Other polymers may exhibit UCST (Upper Critical Solution Temperature). Body temperature (37°C) can be used as a trigger. For example, a hydrogel designed with an LCST below 37°C might be injectable as a solution at room temperature and then form a gel upon contact with the body, providing sustained release [58-62].

- **Light-responsive:** Incorporate photo-cleavable or photo-isomerizable moieties that change structure or degrade upon exposure to specific wavelengths of light (UV, visible, NIR). Photo-isomerization (e.g., azobenzene) can change polymer conformation, altering swelling. Photo-cleavage leads to bond breakage and hydrogel degradation. Non-invasive, precise spatiotemporal control over drug release, particularly useful for superficial conditions like skin cancers or dermatological issues where light penetration is feasible. Near-infrared (NIR) light can penetrate deeper, expanding potential applications [63-65].
- **Redox-responsive:** Contain disulfide bonds (-S-S-) or other redox-sensitive groups that are cleaved or reduced in the presence of specific reducing agents (e.g., glutathione, high concentration in cells) or oxidizing agents. Disulfide bonds can be cleaved by reducing agents like glutathione, leading to hydrogel degradation and drug release. Potential for intracellular drug delivery, targeting conditions where redox gradients exist (e.g., inflammation, certain cancers) [66-69].
- **Ionic strength-responsive:** Respond to changes in salt concentration, affecting the electrostatic interactions within the polymer network. Less commonly exploited for specific physiological triggers in TDD, but important consideration for formulation stability [70].
- **Enzyme-responsive:** Designed with specific peptide sequences or bonds that are substrates for particular enzymes, leading to hydrogel degradation and drug release. Specific enzymes (e.g., matrix metalloproteinases in inflammation/cancer, hyaluronidase for HA hydrogels) cleave recognition sites within the polymer backbone. Targeted release in diseased tissues where specific enzyme levels are elevated (e.g., wound healing, inflammatory skin conditions, skin cancer) [71-73].
- **Dual/Multi- responsive systems:** Hydrogels designed to respond to two or more stimuli simultaneously or sequentially (e.g., pH and temperature, light and enzyme), offering even more sophisticated control over drug release [74].

Table 1. Broad description on classification of hydrogel

Classification Category	Sub-classification	Description & Key Features	Relevance to TDD	Examples of Polymers/Materials
Origin	Natural	Derived from biological sources (e.g., polysaccharides, proteins). Generally biocompatible, biodegradable, and often possess inherent bioactivity. May have lower mechanical strength and	High biocompatibility, low immunogenicity; suitable for sensitive skin.	Chitosan, Alginic Acid, Hyaluronic Acid, Collagen, Gelatin, Cellulose derivatives

		batch variability.		
	Synthetic	Synthesized from chemical monomers. Offer tunable mechanical properties, degradation rates, and drug loading capacities. Can be designed with specific stimuli-responsiveness.	Greater control over properties; can be engineered for specific drug release kinetics.	Poly(N-isopropylacrylamide) (PNIPAM), Poly(ethylene glycol) (PEG), Poly(vinyl alcohol) (PVA), Poly(acrylic acid) (PAA), Poly(2-hydroxyethyl methacrylate) (PHEMA)
	Hybrid (Natural-Synthetic)	Combines natural and synthetic polymers to leverage the advantages of both (e.g., biocompatibility of natural, mechanical strength/tunability of synthetic).	Optimized balance of properties; synergistic effects.	Chitosan-g-PNIPAM, Alginate-PEG blends, Gelatin-PVA composites
Response to Stimuli (Smart Hydrogels)	pH-responsive	Swell or de-swell in response to changes in pH due to ionization of acidic/basic groups.	Can target specific pH environments (e.g., inflamed skin, cancerous tissues, or different skin layers).	PAA, Chitosan, PMAA (Poly(methacrylic acid))
	Temperature-responsive	Exhibit a volume phase transition at a specific temperature (LCST or UCST).	Useful for on-demand release triggered by body temperature or external heat.	PNIPAM (LCST), Poly(vinyl caprolactam)
	Light-responsive	Undergo changes in properties (e.g., swelling, degradation) upon exposure to specific wavelengths of light.	Non-invasive, spatiotemporal control over drug release.	Azobenzene-containing polymers, spiropyran-modified hydrogels
	Redox-	Respond to	Can target	Disulfide bond-

	responsive	changes in redox potential (e.g., presence of reducing agents like glutathione).	tissues with abnormal redox states (e.g., tumors, inflamed areas).	containing polymers
	Enzyme-responsive	Degradate or release drugs in the presence of specific enzymes.	Targeted release at sites of enzyme overexpression (e.g., wound beds, infection sites).	Peptide-crosslinked hydrogels (cleavable by MMPs, collagenase), Glucose-responsive (for glucose oxidase)
	Electric/Magnetic-responsive	Change properties under electric or magnetic fields.	Potential for external, remote control of drug delivery.	Conductive polymers, magnetic nanoparticle-loaded hydrogels

Design and Characterization of Hydrogels for TDD

The successful development of hydrogels for transdermal drug delivery hinges on a meticulous design process followed by comprehensive characterization. The design phase involves tailoring the hydrogel's properties to optimize drug loading, release kinetics, skin adhesion, and overall performance, while the characterization phase confirms these properties and predicts in-vivo behaviour [71].

1. Key Design Considerations

Designing a hydrogel for TDD requires a holistic approach, considering the drug's properties, the target skin area, and the desired therapeutic outcome.

Mechanical Properties (Strength, Flexibility, Adhesion to skin): A transdermal patch or gel must be robust enough to withstand handling, maintain structural integrity on the skin, and conform to skin contours without cracking or tearing. If too rigid, it can cause discomfort or detach. If too soft, it may not maintain its shape or deliver drug effectively. Young's modulus, tensile strength, elongation at break, and adhesive strength (tackiness). Hydrogels for patches need good adhesion to ensure continuous contact with the skin surface, whereas gels need appropriate viscosity and spreadability. Adjusting cross-linking density (higher density = stiffer), using tougher polymers (e.g., PVA), incorporating reinforcing agents (e.g., nanoparticles), or forming interpenetrating polymer networks (IPNs) [72].

Swelling Ratio and Water Content: The ability of a hydrogel to swell in aqueous environments and its equilibrium water content directly impact drug diffusion, mechanical properties, and interaction with the skin. Optimal swelling maintains a moist environment on the skin, which can hydrate the stratum corneum and improve drug permeation. Excessive swelling can lead to mechanical instability, while insufficient swelling might hinder drug release. Swelling kinetics (rate of water uptake) and equilibrium swelling ratio. Controlled by polymer hydrophilicity, cross-linking density (lower density = higher swelling), and environmental factors (pH, temperature, ionic strength for smart hydrogels) [73].

Drug Loading and Release Kinetics: The hydrogel must be able to encapsulate a therapeutically relevant amount of the drug and release it at a controlled rate to maintain desired systemic or local concentrations. Burst release can lead to toxicity, while slow release may result in sub-therapeutic levels. Drug solubility in the hydrogel matrix, compatibility between drug and polymer, and the desired release profile (e.g., zero-order, first-order, pulsatile). Varies depending on the drug and desired profile. Incorporating drug into the polymer solution before gelation, post-loading by soaking, or integrating drug-loaded nanoparticles within the hydrogel matrix. Release kinetics are influenced by pore size, cross-linking density, polymer degradation rate, and the hydrogel's responsiveness to stimuli [74].

Biocompatibility and Biodegradability: The hydrogel material must be non-toxic, non-irritating, and non-sensitizing to the skin and underlying tissues. For long-term applications or systems designed for invasive delivery (e.g., microneedles), biodegradability into non-toxic products is essential to avoid accumulation or the need for surgical removal. Cytotoxicity, genotoxicity, immunogenicity, skin irritation (primary dermal irritation index), and fate of degradation products. Utilizing FDA-approved or generally recognized as safe (GRAS) polymers (e.g., HA, chitosan, PEG), ensuring complete removal of unreacted monomers and cross-linkers, and selecting biodegradable linkages in the polymer backbone [75].

Rheological Properties (Viscosity, Spreadability): For topical gels or creams, rheological properties determine ease of application, spreadability, and retention on the skin surface. For injectable hydrogels (e.g., for microneedle applications), appropriate viscosity is critical for smooth injection. Shear thinning behavior (desirable for easy application), yield stress, and thixotropy. Polymer concentration, molecular weight, type of cross-linking, and presence of thickeners or rheology modifiers [76].

2. Characterization Techniques

A suite of analytical and physical characterization techniques is employed to evaluate the synthesized hydrogels and predict their performance in TDD.

Physical Characterization [77]:

- **Fourier-Transform Infrared Spectroscopy (FTIR) & Nuclear Magnetic Resonance (NMR) Spectroscopy:** Confirm the chemical structure of the polymers, identify functional groups, and verify successful cross-linking. FTIR can also be used to study drug-polymer interactions.
- **X-ray Diffraction (XRD):** Provides information on the crystallinity of the polymer network and any encapsulated drug, which can influence swelling and drug release.
- **Scanning Electron Microscopy (SEM) & Transmission Electron Microscopy (TEM):** Visualize the hydrogel's morphology, pore size, and internal network structure. SEM is particularly useful for observing surface topography and porosity, while TEM can provide higher resolution images of internal structure or nanoparticles within the hydrogel.
- **Atomic Force Microscopy (AFM):** Provides nanoscale topographical information and can be used to measure local mechanical properties (e.g., elasticity).

Mechanical Testing [78]:

- **Tensile Strength and Elongation at Break:** Measure the hydrogel's ability to withstand stretching forces before breaking, crucial for patches and films.
- **Compression Modulus:** Assesses the hydrogel's stiffness under compressive load, important for understanding resistance to deformation.
- **Rheology:** Measures the flow and deformation properties of the hydrogel. Techniques like oscillatory rheology determine storage modulus (G') and loss modulus (G''), indicating the elastic and viscous components, respectively. This is vital for gels (viscosity, spreadability) and for understanding gel formation kinetics.
- **Adhesion Testing (e.g., Peel Adhesion, Tack Test):** Quantifies the hydrogel's ability to stick to a surface (e.g., porcine skin, human skin cadaver), important for patch design.

Swelling Studies [79]:

- **Equilibrium Swelling Ratio:** Determines the maximum amount of water a hydrogel can absorb at equilibrium (usually in simulated physiological fluid, e.g., PBS, or water). Calculated as (weight of swollen hydrogel - weight of dry hydrogel) / weight of dry hydrogel.
- **Swelling Kinetics:** Measures the rate at which the hydrogel absorbs water over time, providing insight into its internal network structure and diffusion properties.
- **Influence of pH/Temperature/Ionic Strength:** For smart hydrogels, swelling studies are conducted across a range of stimuli conditions to characterize their responsiveness.

Drug Release Studies (In vitro, Ex vivo) [80]:

- **In vitro Release:** Performed using dissolution apparatus (e.g., paddle over disc, Franz diffusion cells with a non-skin membrane) to determine the drug release profile from the hydrogel into a receptor medium over time.
- **Ex vivo Permeation (Franz Diffusion Cells):** The gold standard for assessing drug permeation through excised skin (e.g., porcine ear skin, human cadaver skin). The hydrogel is applied to the donor compartment, and drug permeating through the skin is collected in the receptor compartment, simulating the transdermal delivery process. Key parameters obtained include flux, permeability coefficient, and lag time.

Biocompatibility Testing [81]:

- **Cytotoxicity Assays (e.g., MTT, Live/Dead):** Evaluate the hydrogel's toxicity to cell lines (e.g., keratinocytes, fibroblasts) in direct contact or via extracts.
- **Hemocompatibility:** Assesses the hydrogel's interaction with blood components (e.g., hemolysis, coagulation).
- **Skin Irritation/Sensitization Tests (In vitro, In vivo - e.g., Draize test on rabbits, human patch test):** Determine if the hydrogel or its components cause dermal irritation or allergic reactions.

Skin Permeation Studies (In vivo) [82]:

- While more complex and ethically regulated, in vivo studies on animal models (e.g., rats, guinea pigs, hairless mice) or human volunteers are the ultimate test for TDD systems. They provide data on systemic drug levels (pharmacokinetics) and local effects, taking into account the complex physiological environment (blood flow, metabolism).

Mechanisms of Drug Release from Hydrogels in TDD

The release of a drug from a hydrogel matrix into the skin is a complex process influenced by the hydrogel's structure, the drug's properties, and the surrounding physiological environment. Understanding these mechanisms is crucial for designing hydrogels with predictable and controlled release profiles. Generally, drug release from hydrogels can be categorized into diffusion, swelling, and degradation/erosion-controlled mechanisms, often occurring in combination shown in **Table 2** [83].

Diffusion-Controlled Release

This is the most common mechanism, particularly for non-degradable hydrogels where the drug is dissolved or dispersed within the polymer network [84].

- Mechanism:** The drug molecules migrate from a region of higher concentration (within the hydrogel) to a region of lower concentration (the skin surface/receptor medium) through the water-filled pores and channels of the hydrogel network. This process is governed by Fick's Laws of Diffusion.
- Factors Influencing Diffusion:**
 - Drug Properties:** Molecular weight (smaller drugs diffuse faster), solubility in the hydrogel's aqueous phase, and partition coefficient between the hydrogel and the external medium.
 - Hydrogel Properties:**
 - Pore Size/Mesh Size:** Larger pore sizes facilitate faster diffusion. Pore size is inversely related to cross-linking density.
 - Cross-linking Density:** Higher cross-linking density means a tighter network, smaller pores, and slower diffusion.
 - Water Content/Swelling:** As a hydrogel swells, its mesh size increases, facilitating faster drug diffusion.
 - Polymer-Drug Interactions:** Strong interactions (e.g., hydrogen bonding, electrostatic interactions) between the drug and the polymer matrix can retard drug release.
 - Environmental Factors:** Temperature (increases diffusion coefficient), viscosity of the surrounding medium.
- Release Kinetics:** Often follows square root of time kinetics initially (Higuchi model) for matrix systems, or first-order kinetics for reservoir systems. A common challenge is burst release, where a significant portion of the drug is released rapidly, followed by a slower, more sustained phase. This can be mitigated by optimizing cross-linking, drug loading method, or surface modifications.

Swelling-Controlled Release

This mechanism is prominent in hydrogels that swell significantly upon contact with water or biological fluids, leading to a change in their network structure and subsequent drug release [85].

- **Mechanism:** In this scenario, the initial dry or semi-dry hydrogel acts as a rigid matrix. When exposed to an aqueous environment (e.g., skin moisture), the polymer chains relax and the hydrogel swells by absorbing water. This swelling process increases the mesh size of the polymer network, allowing previously entrapped drug molecules to diffuse out.
- **Process:**
 1. Water penetration into the hydrogel matrix.
 2. Hydrogel swelling and polymer chain relaxation.
 3. Diffusion of drug from the swollen region into the surrounding medium.
- **Release Kinetics:** Drug release is coupled to the rate of polymer swelling. If the swelling rate is slower than the drug diffusion rate, swelling becomes the rate-limiting step.
- **Factors Influencing Swelling:**
 - **Polymer Chemistry:** Presence of hydrophilic groups, ionizable groups (for pH-responsive gels), or thermosensitive groups (for temperature-responsive gels).
 - **Cross-linking Density:** Higher cross-linking reduces the extent and rate of swelling.
 - **External Stimuli:** For smart hydrogels, pH, temperature, ionic strength, or light can trigger swelling or deswelling, thus controlling drug release.
- **Relevance for TDD:** Many hydrogels designed as patches are initially relatively dry. Upon application to the skin, they absorb moisture from the skin's surface and underlying layers, swell, and then release the drug. This provides a built-in mechanism for initiation of delivery.

Erosion/Degradation-Controlled Release

This mechanism involves the chemical or enzymatic breakdown of the hydrogel matrix, leading to the release of encapsulated drugs. This is particularly relevant for biodegradable hydrogels, offering the advantage of eliminating the need for removal after drug depletion [86].

- **Mechanism:** The polymer chains themselves or the cross-links holding the network together are cleaved (e.g., by hydrolysis, enzymatic degradation, or redox reactions). As the polymer degrades, the hydrogel disintegrates, releasing the entrapped drug.
- **Types of Degradation:**
 - **Hydrolytic Degradation:** Occurs through the chemical breakdown of susceptible bonds (e.g., ester, amide, anhydride bonds) in the presence of water.
 - **Enzymatic Degradation:** Specific enzymes present in the biological environment (e.g., hyaluronidase for HA, proteases for gelatin/collagen) cleave specific bonds within the polymer backbone.
 - **Redox Degradation:** Cleavage of redox-sensitive bonds (e.g., disulfide bonds) in response to reducing or oxidizing environments.

- **Release Kinetics:** Release can be sustained over a long period. If the degradation rate is constant, zero-order release kinetics can be achieved, which is highly desirable for maintaining steady drug levels.
- **Factors Influencing Degradation:**
 - **Polymer Chemistry:** Presence of degradable linkages, hydrophilicity (influences water uptake for hydrolysis).
 - **Cross-linking Density:** Higher cross-linking can slow down degradation by making the network less accessible to water or enzymes.
 - **Presence of Enzymes/pH:** For enzyme-responsive or pH-degradable hydrogels.
- **Relevance for TDD:** Biodegradable hydrogels are ideal for long-term transdermal patches or microneedle-based systems that dissolve into the skin, avoiding discomfort of patch removal and offering precise control over the duration of drug delivery. They are particularly attractive for delivering drugs that require prolonged administration, potentially over days or weeks.

Stimuli-Responsive Release Mechanisms

For smart hydrogels, the release mechanism is dynamically controlled by the applied stimulus, which often modulates the swelling, degradation, or pore size of the hydrogel [87].

- **pH-Responsive Release:** As the pH changes, the ionization state of the polymer's ionizable groups changes, leading to electrostatic repulsion/attraction and a corresponding change in swelling. This change in swelling alters the mesh size, thereby controlling drug diffusion. For example, a hydrogel designed to swell at the slightly higher pH of infected skin could release antibiotics specifically at the site of infection.
- **Temperature-Responsive Release:** For LCST polymers like PNIPAM, increasing the temperature above the LCST causes the hydrogel to rapidly deswell and expel water. This "squeezing out" effect can lead to a burst release of drug, or a decrease in mesh size that effectively traps the drug below the LCST and releases it above, or vice-versa depending on the design. This can be exploited using body temperature as a trigger.
- **Enzyme-Responsive Release:** The presence of a specific enzyme at a target site (e.g., a wound, tumor, or inflammatory area) cleaves bonds within the hydrogel, leading to its degradation and the release of the encapsulated drug. This allows for highly localized and targeted drug delivery.
- **Light-Responsive Release:** Light exposure can cause photo-cleavage of cross-links, leading to hydrogel disintegration, or photo-isomerization that alters the polymer's conformation and swelling, thereby controlling drug release. This offers unparalleled spatiotemporal control.

Table 2. Mechanism of Drug release from Hydrogel

Release Mechanism	Description	Contributing Hydrogel Properties	Factors Influencing Release Rate
Diffusion-Controlled	Drug molecules diffuse through the water-filled pores of the swollen hydrogel network. The	High water content, specific pore size, crosslinking density.	Drug molecular weight, drug hydrophilicity, hydrogel pore size,

	rate depends on the drug's size, solubility, and the hydrogel's mesh size/porosity.		tortuosity, drug concentration gradient.
Swelling-Controlled	Drug release is triggered or modulated by the hydrogel's swelling. As the hydrogel swells, its network expands, allowing entrapped drugs to diffuse out.	Swelling capacity, responsiveness to stimuli (pH, temperature), polymer relaxation.	Rate of swelling, initial drug distribution, external stimuli, skin hydration.
Degradation/Erosion-Controlled	Drug release occurs as the hydrogel matrix degrades or erodes (either by hydrolysis or enzymatic breakdown), releasing the entrapped drug.	Biodegradability of polymers, presence of cleavable bonds, specific enzyme sensitivity.	Type of polymer, crosslinking density, presence of enzymes, environmental conditions.
Chemically-Controlled	Drug release is governed by a chemical reaction within the hydrogel (e.g., cleavage of covalent bonds linking the drug to the polymer, or drug conversion from a prodrug form).	Presence of specific chemical linkages, incorporation of catalysts/enzymes.	Reaction kinetics, concentration of reactants, specific trigger (e.g., pH, redox).
Stimuli-Responsive (Combined Mechanisms)	The hydrogel changes its properties (e.g., swelling, degradation, pore size) in response to external or internal stimuli, thereby controlling drug release. This often combines diffusion and/or swelling.	Specific smart polymers (pH, temp, light, redox, enzyme-sensitive).	Intensity and duration of stimulus, threshold of response, kinetics of phase transition.

Challenges and Limitations of Hydrogels in TDD

Despite the significant advancements and promising applications, the widespread clinical translation and commercialization of hydrogel-based transdermal drug delivery systems face several formidable challenges. Addressing these limitations is crucial for realizing their full therapeutic potential [88-89].

1. Scalability and Manufacturing Issues

- Complexity of Synthesis:** Many advanced hydrogels, especially smart or multi-functional systems, involve complex polymerization reactions, specific cross-linking chemistries (e.g., click chemistry), or multi-step fabrication processes. Scaling these laboratory-scale procedures to industrial production volumes while maintaining consistency and quality is a major hurdle.

- **Cost of Raw Materials:** Specialized polymers, particularly highly pure or functionalized ones, and advanced cross-linkers can be expensive, driving up the overall production cost.
- **Process Control and Reproducibility:** Achieving batch-to-batch consistency in properties like swelling ratio, pore size, mechanical strength, and drug loading/release kinetics is critical for regulatory approval but can be difficult with hydrogels due to their inherent variability in network formation.
- **Sterilization:** Many hydrogels are sensitive to heat and radiation (e.g., gamma irradiation can cause degradation or alter cross-linking), making standard sterilization methods challenging. Alternative methods like sterile filtration of components followed by aseptic processing, or ethylene oxide gas sterilization (with careful residue removal), are often required, adding complexity and cost.

2. Regulatory Pathways and Approval

- **Lack of Clear Guidelines:** The regulatory landscape for novel drug-device combination products, especially those involving advanced materials like smart hydrogels or microneedle arrays, is still evolving. There isn't always a clear, streamlined pathway for approval, which can lead to lengthy and expensive development timelines.
- **Safety of Novel Excipients:** If new polymers or cross-linkers are used, extensive toxicology studies are required to demonstrate their safety, adding significant time and cost. Even for established polymers, their use in a new configuration (e.g., as a dissolving microneedle) may require new safety assessments.
- **Demonstrating Bioequivalence/Therapeutic Equivalence:** For generic versions or new formulations of existing transdermal drugs, demonstrating equivalence can be challenging due to the complex interplay of drug release from the hydrogel and permeation through the skin.

3. Batch-to-Batch Variability

- **Polymer Purity and Molecular Weight:** Natural polymers often exhibit inherent variability in purity, molecular weight, and degree of functionalization, leading to inconsistencies in the final hydrogel properties. Even synthetic polymers can have batch variations if polymerization conditions are not precisely controlled.
- **Cross-linking Density:** Slight variations in cross-linker concentration or reaction conditions can lead to significant differences in cross-linking density, which directly impacts swelling, mechanical strength, and drug diffusion.
- **Drug Loading Homogeneity:** Ensuring uniform distribution of the drug throughout the hydrogel matrix, especially for large-scale production, can be challenging. Non-uniform loading can lead to inconsistent drug delivery[89].

4. Mechanical Robustness for Practical Application

- **Fragility:** Many highly swollen hydrogels are mechanically weak and brittle, making them difficult to handle, apply, and wear without tearing or breaking. This is particularly true for thin hydrogel patches.
- **Adhesion:** Maintaining consistent and sufficient adhesion to the skin over extended wear periods (e.g., days) can be problematic, especially with movement, sweating, or external friction. Poor adhesion leads to inconsistent drug delivery.

- **Delamination:** For multi-layered hydrogel patches, delamination of layers can compromise performance.
- **Conformability:** The patch must conform well to irregular skin surfaces without wrinkling or detaching.

5. Long-term Stability and Shelf Life

- **Physical Stability:** Hydrogels can undergo changes over time, such as syneresis (water expulsion), drying out, or changes in network structure, affecting their physical integrity and drug release.
- **Chemical Stability:** Degradation of the polymer or the encapsulated drug during storage (e.g., hydrolysis, oxidation, photodegradation) can reduce efficacy or produce toxic byproducts.
- **Microbial Contamination:** The high water content makes hydrogels susceptible to microbial growth, necessitating effective preservative systems or sterile manufacturing, which again poses challenges for sterilization.
- **Packaging:** Requires specialized packaging to prevent water loss or absorption, protect from light, and maintain sterility.

6. Potential for Skin Irritation or Sensitization

- **Components:** While hydrogels are generally considered biocompatible, individual monomers, unreacted cross-linkers, initiators, or certain polymer degradation products can be irritants or sensitizers.
- **Occlusion:** Prolonged occlusion by highly hydrating hydrogels can lead to maceration of the skin, increasing susceptibility to irritation, folliculitis, or fungal infections, especially in individuals with sensitive skin.
- **Adhesive Related Issues:** Even if the hydrogel matrix is non-irritating, the adhesive used to secure the patch can cause contact dermatitis or allergic reactions in some patients.

7. Limited Drug Permeability for Macro-molecules (even with enhancers)

- While hydrogels combined with microneedles or active techniques show great promise, delivering large macromolecules (e.g., therapeutic antibodies, gene therapy vectors) through the skin in clinically relevant doses remains a significant challenge due to their size, hydrophilicity, and susceptibility to degradation.
- The efficiency of permeation enhancement techniques needs to be further optimized and validated for these complex molecules.

Future Perspectives and Emerging Trends [89-90]:

The field of hydrogels for transdermal drug delivery is rapidly evolving, driven by innovations in materials science, nanotechnology, and personalized medicine. The future promises more sophisticated, efficient, and patient-friendly systems.

1. Advanced Smart Hydrogels: Towards Autonomous Systems

- **Closed-Loop Drug Delivery:** Developing hydrogels that can not only sense a physiological biomarker (e.g., glucose levels, inflammation markers, pH) but also

autonomously release the exact amount of drug needed in response. This involves integrating biosensors directly within the hydrogel matrix or as part of a hydrogel-based wearable device. For example, glucose-responsive insulin-releasing hydrogels activated by hyperglycemia.

- **AI/Machine Learning-assisted Design:** Utilizing artificial intelligence and machine learning algorithms to predict optimal polymer structures, cross-linking densities, and formulation parameters for desired drug release profiles and skin permeation. This data-driven approach can significantly accelerate the design and optimization process, reducing trial-and-error experimentation.
- **Multi-Stimuli Responsive Hydrogels:** Designing hydrogels that respond to multiple physiological or external triggers (e.g., a combination of temperature, pH, and specific enzyme levels) to achieve highly precise, spatio-temporal drug release, especially relevant for complex diseases or targeted therapies.

2. Nanotechnology Integration (Nanoparticle-laden Hydrogels)

- **Enhanced Drug Loading and Stability:** Incorporating drug-loaded nanoparticles (e.g., liposomes, polymeric nanoparticles, solid lipid nanoparticles, dendrimers) into hydrogels. This can improve the solubility and stability of poorly soluble drugs, protect sensitive biologics from degradation, and achieve higher drug loading capacities.
- **Controlled and Targeted Release:** Nanoparticles themselves can be designed for controlled release or targeted delivery, and their encapsulation within a hydrogel provides an additional layer of control, acting as a secondary drug reservoir. For example, a hydrogel containing pH-responsive nanoparticles could release drug first from the hydrogel, then from the nanoparticles upon reaching a specific pH in the skin or underlying tissue.
- **Synergistic Permeation Enhancement:** Nanoparticles may interact with the skin barrier, and their combination with hydrogels can create a synergistic permeation enhancement effect, particularly through hair follicles or by altering lipid organization.

3. 3D Printing of Hydrogel Devices for Personalized Medicine

- **On-Demand Fabrication:** Additive manufacturing (3D printing) allows for the precise fabrication of hydrogel patches or microneedle arrays with customized geometries, drug dosages, and release profiles tailored to an individual patient's needs, body site, and specific condition.
- **Complex Architectures:** Enables the creation of intricate internal structures, multi-layered systems, or precise drug distribution within the hydrogel, which are difficult to achieve with traditional manufacturing methods.
- **Rapid Prototyping:** Accelerates the development and testing of new hydrogel designs.
- **Point-of-Care Manufacturing:** Potential for bedside or in-pharmacy fabrication of patient-specific transdermal systems.

4. Multifunctional Hydrogels (e.g., Diagnostic and Therapeutic)

- **Theranostic Hydrogels:** Systems that combine therapeutic drug delivery with diagnostic capabilities. For instance, a hydrogel patch that releases a drug while

simultaneously monitoring biomarkers in the interstitial fluid (e.g., glucose, lactate, inflammatory cytokines), providing real-time feedback on treatment efficacy or disease progression.

- **Antimicrobial and Anti-inflammatory Properties:** Beyond drug delivery, designing hydrogels with inherent antimicrobial properties (e.g., using chitosan, silver nanoparticles) or anti-inflammatory effects can enhance their therapeutic utility, particularly for wound healing or dermatological conditions.
- **Self-Healing Hydrogels:** Incorporating dynamic bonds that allow the hydrogel to self-heal minor damage (e.g., cracks) to maintain mechanical integrity and sustained drug release over prolonged periods.

5. Biocompatible and Biodegradable Next-Generation Materials

- **Fully Biocompatible and Biodegradable Systems:** A continued emphasis on developing hydrogels from naturally derived or synthetic biodegradable polymers that degrade into non-toxic, easily excretable byproducts, eliminating the need for removal and minimizing long-term tissue reactions.
- **Mimicking Extracellular Matrix (ECM):** Designing hydrogels that closely mimic the biochemical and biomechanical properties of the native extracellular matrix to enhance skin integration, promote tissue repair, and support sustained drug release in a physiologically relevant manner.
- **Bio-orthogonal Chemistries:** Increased use of click chemistry and other bio-orthogonal reactions for hydrogel synthesis, enabling milder conditions, higher specificity, and reduced toxicity.

6. Clinical Translation and Commercialization Focus

- **Bridging the Gap:** Greater collaboration between academic research, pharmaceutical industry, and regulatory bodies to streamline the translation of innovative hydrogel technologies from bench to bedside.
- **Cost-Effectiveness:** Developing scalable and cost-effective manufacturing processes to make advanced hydrogel systems economically viable and accessible for widespread clinical use.
- **Patient Compliance and User-Friendliness:** Prioritizing designs that enhance patient comfort, ease of application, discreetness, and long wear times to improve adherence to therapy. This includes optimizing adhesion, flexibility, and minimizing skin irritation.

Conclusion

Hydrogel-based transdermal drug delivery systems have rapidly advanced, demonstrating significant potential to overcome the formidable skin barrier and revolutionize drug administration. Their inherent properties, such as high water content, biocompatibility, and tunable mechanical characteristics, position them as highly versatile platforms for delivering a wide range of therapeutic agents, from small molecules to complex biologics. The development of "smart" hydrogels, responsive to various stimuli like pH, temperature, or enzymes, further enhances their capability for controlled, on-demand, and targeted drug release, moving towards more personalized and efficient therapies. Despite these advancements, the journey from laboratory innovation to widespread clinical application is fraught with challenges. Issues such as scalability, manufacturing reproducibility, regulatory

complexities, mechanical fragility, long-term stability, and the potential for skin irritation must be systematically addressed. Moreover, consistently achieving therapeutically relevant permeation for macromolecules remains an area requiring further optimization. The future of hydrogel-based TDD is exceptionally promising, driven by the integration of cutting-edge technologies. The advent of closed-loop drug delivery systems, powered by embedded biosensors and AI-driven design, heralds an era of autonomous and highly precise therapeutic interventions. The synergy between hydrogels and nanotechnology promises enhanced drug loading, stability, and targeted release, while 3D printing offers unprecedented opportunities for personalized medicine through on-demand fabrication of customized devices. The ongoing focus on developing multifunctional, theranostic, and self-healing hydrogels, alongside a renewed commitment to fully biocompatible and biodegradable materials, will further expand their therapeutic utility. Ultimately, bridging the gap between innovative research and clinical translation will require concerted efforts from academia, industry, and regulatory bodies. By prioritizing cost-effectiveness, patient compliance, and rigorous safety assessments, hydrogel-based transdermal systems are poised to transform patient care, offering a comfortable, effective, and intelligent approach to drug delivery.

References:

1. Prausnitz MR, Langer R. Transdermal drug delivery. *Nature Biotechnology*. 2008; 26(11):1261–1268. doi:10.1038/nbt.1504.
2. Barry BW. Novel mechanisms in dermal and transdermal drug delivery. *Journal of Controlled Release*. 2001; 76(3):247–256. doi:10.1016/S0168-3659(01)00457-4.
3. Peppas NA, Bures Y, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. *European Journal of Pharmaceutics and Biopharmaceutics*. 2000; 50(1):27–46. doi:10.1016/S0939-6411(00)00090-4.
4. Gore V, Garg A, Gupta M. Recent advances in hydrogel-based drug delivery systems for transdermal application: a review. *Asian Journal of Pharmaceutical Sciences*. 2014; 9(4):199–210. doi:10.1016/j.ajps.2014.04.005.
5. Roy K, Peppas NA. Hydrogels in biomedical applications. *MRS Bulletin*. 2005; 30(2):76–79. doi:10.1557/mrs2005.22.
6. Lin Y, Liang YY. Recent advances of hydrogels for topical and transdermal drug delivery. *European Journal of Pharmaceutical Sciences*. 2019; 137:104979. doi:10.1016/j.ejps.2019.104979.
7. Sinha VR, Singla AK, Wadhawan R, Kaushik R, Kumria R, Bansal K. Chitosan microspheres as a potential carrier for drugs. *International Journal of Pharmaceutics*. 2004; 274(1–2):1–17. doi:10.1016/j.ijpharm.2003.10.041.
8. Alarcon B, Vilos C. Hydrogels as drug delivery systems for skin applications. *Biomacromolecules*. 2018; 19(9):3328–3343. doi:10.1021/acs.biomac.8b00600.
9. Nguyen MK, Lee DS. Biodegradable hydrogels for drug delivery applications. *Advanced Drug Delivery Reviews*. 2010; 62(10):875–891. doi:10.1016/j.addr.2010.08.012.
10. Hoare TR, Kohane DS. Hydrogels for biomedical applications: current technologies and future trends. *Polymer Reviews*. 2008; 48(3):455–475. doi:10.1080/15583720802204757.
11. Elias PM. Stratum corneum defensive functions: the neighborhood effect. *Journal of Investigative Dermatology*. 2005; 125(2):209–220. doi:10.1111/j.0022-202X.2005.23668.x.
12. Williams AC, Barry BW. Penetration enhancers. *Advanced Drug Delivery Reviews*. 2012; 64:128–137. doi:10.1016/j.addr.2012.09.032.

13. Hadgraft J, Lane ME. Skin permeability: the opportunities for drug delivery. *Expert Opinion on Drug Delivery*. 2005; 2(1):1–8. doi:10.1517/17425247.2.1.1.
14. Walters KA, Roberts MS. Dermatological and transdermal formulations. CRC Press. 2002.
15. Kim IY, Seo SJ, Moon HS, Yoo MK, Park HS, Kim BC. Chitosan and its derivatives for tissue engineering applications. *Polymer Degradation and Stability*. 2008; 93(8):1324–1335. doi:10.1016/j.polymdegradstab.2008.05.021.
16. Berger J, Reist M, Chenite J, Felt O, Gurny R, Jordan O. Pseudoplastic properties of chitosan-based thermogelling systems. *European Journal of Pharmaceutics and Biopharmaceutics*. 2004; 57(1):19–34. doi:10.1016/S0939-6411(03)00155-X.
17. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. *Progress in Polymer Science*. 2012; 37(1):106–126. doi:10.1016/j.progpolymsci.2011.06.003.
18. Draget KI, Taylor C. Chemical, physical and biological properties of alginates and their biomedical implications. *Progress in Polymer Science*. 2011; 36(11):1269–1291. doi:10.1016/j.progpolymsci.2011.04.007.
19. Collins MN, Birkinshaw C. Hyaluronic acid hydrogels for biomedical applications. *Journal of Materials Science: Materials in Medicine*. 2005; 16(11):1069–1077. doi:10.1007/s10856-005-4714-y.
20. Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. *Advanced Materials*. 2011; 23(16):H41–H56. doi:10.1002/adma.201003963.
21. Wang Y, Ding B. Electrospun nanofibers for drug delivery applications. *Journal of Biomedical Materials Research Part A*. 2016; 104(3):670–681. doi:10.1002/jbm.a.35682.
22. Zong X, Bienek DR, Kim HY. Fabrication and characterization of electrospun silk fibroin/chitosan hybrid nanofibers. *Journal of Biomaterials Science Polymer Edition*. 2009; 20(13):1855–1869. doi:10.1163/156856209X389049.
23. Singh S, Singh K, Singh S, Singh R. Chitosan based hydrogels: synthesis and applications. *Journal of Applied Polymer Science*. 2010; 118(1):589–598. doi:10.1002/app.32256.
24. Balakrishnan A, Jayakrishnan A. A hydrogel from chitosan and oxidized alginate for wound dressing applications. *Biomaterials*. 2005; 26(23):4445–4452. doi:10.1016/j.biomaterials.2004.11.035.
25. Censi R, Di Martino P. Alginate in drug delivery systems: properties and applications. *Drug Development and Industrial Pharmacy*. 2015; 41(9):1409–1422. doi:10.3109/03639045.2014.979954.
26. Lin CC, Metters AS. Hydrogels in controlled release formulations: network design and applications. *Journal of Controlled Release*. 2006; 116(2):e206–e215. doi:10.1016/j.jconrel.2006.09.017.
27. Hoffman AS. Hydrogels for biomedical applications. *Advanced Drug Delivery Reviews*. 2002; 54(1):3–12. doi:10.1016/S0169-409X(01)00241-3.
28. Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. *Advanced Drug Delivery Reviews*. 2006; 58(15):1655–1670. doi:10.1016/j.addr.2006.09.020.
29. Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. *Drug Discovery Today*. 2002; 7(9):569–579. doi:10.1016/S1359-6446(02)02255-9.
30. Kopecek J. Smart hydrogels. *Journal of Polymer Science Part A Polymer Chemistry*. 2002; 40(18):3291–3301. doi:10.1002/pola.10461.
31. Zhang Y, Fang Y. Recent progress in poly(vinyl alcohol) hydrogels for biomedical applications. *Macromolecular Rapid Communications*. 2017; 38(19):1700203. doi:10.1002/marc.201700203.

32. Lozinski VI, Plieva FM. Poly(vinyl alcohol) cryogels: fabrication, properties and applications. *Enzyme and Microbial Technology*. 1998; 23(7):421–432. doi:10.1016/S0141-0229(98)00072-8.
33. Gil ES, Hudson SM. Chitosan: properties and applications. *Progress in Polymer Science*. 2004; 29(1):11–32. doi:10.1016/j.progpolymsci.2003.07.002.
34. Calvert P. Hydrogels for drug delivery. *MRS Bulletin*. 2009; 34(7):503–507. doi:10.1557/mrs2009.149.
35. Wichterle O, Lim D. Hydrophilic gels for biological use. *Nature*. 1960; 185(4711):117–118. doi:10.1038/185117a0.
36. Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M. Emerging applications of stimuli-responsive polymer materials. *Nature Materials*. 2010; 9(2):101–113. doi:10.1038/nmat2614.
37. Li Y, Mooney DJ. Designer hydrogels for controlled drug delivery. *Nature Reviews Materials*. 2016; 1(12):16071. doi:10.1038/natrevmats.2016.71.
38. Roy S, Mohanty S. Recent advances in stimuli-responsive hydrogels for drug delivery. *Journal of Controlled Release*. 2020; 328:706–724. doi:10.1016/j.conrel.2020.09.003.
39. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. *Advanced Drug Delivery Reviews*. 2001; 53(3):321–339. doi:10.1016/S0169-409X(01)00203-4.
40. Al-Ani NA, Al-Marzooq ZM. pH-responsive hydrogels for controlled drug delivery. *Journal of Drug Delivery Science and Technology*. 2019; 54:101377. doi:10.1016/j.jddst.2019.101377.
41. Ahmed EM. A review on recent advances in hydrogels as drug delivery system. *International Journal of Applied Pharmaceutics*. 2025; 17(1):1–10. doi:10.22159/ijap.2025v17i1.00000.
42. Sharma V, Pandey M. Recent advances in hydrogel-based drug delivery systems for dermal and transdermal applications: a review. *Journal of Applied Polymer Science*. 2024; e55460. doi:10.1002/app.55460.
43. Pourtalebi Jahromi SS, Hamidi M. Hydrogels for dermal and transdermal drug delivery. *Biomaterials Science*. 2023; 11(12):4057–4076. doi:10.1039/D3BM00592H.
44. Meng F, Qiao X, Xin C, Ju X, He M. Recent progress of polymeric microneedle-assisted long-acting transdermal drug delivery. *Journal of Pharmacy and Pharmaceutical Sciences*. 2024; 27:1–20. doi:10.18433/jpps33588.
45. Aher S, Solanki D, Jain A. Nanotechnology at work: hydrogel drug delivery architectures. *Journal of Drug Delivery and Therapeutics*. 2024; 14(3):1–10. doi:10.22270/jddt.v14i3.0000.
46. Rahman Z, Tabish M. Recent advances in hydrogels in pharmaceutical formulations. *Gels*. 2023; 9(12):972. doi:10.3390/gels9120972.
47. Khan R, Alam P, Shah J, Khan A. Recent advances in natural polymer-based hydrogels for biomedical applications. *Biofunctional Gels*. 2023; 2(1):20230009. doi:10.1002/bfg2.20230009.
48. Al-Rubaye AH, Abdulla MA. A comprehensive review on smart hydrogels for biomedical applications. *Journal of Drug Delivery Science and Technology*. 2024; 95:105658. doi:10.1016/j.jddst.2024.105658.
49. Bagheri A, Farokhzad OC. Recent advances in transdermal drug delivery systems: from traditional patches to novel technologies. *Expert Opinion on Drug Delivery*. 2023; 20(9):1181–1200. doi:10.1080/17425247.2023.2240550.
50. Zhang Y, Li B. Progress of hydrogels for transdermal drug delivery. *Journal of Controlled Release*. 2023; 360:155–170. doi:10.1016/j.conrel.2023.07.029.

51. Li Y, Wei W. Nanoparticle-laden hydrogels for enhanced transdermal delivery of small molecules. *Journal of Nanobiotechnology*. 2025; 23(1):1–15. doi:10.1186/s12951-024-02000-x.
52. Gupta R, Sharma A. Recent developments in nanocarrier-hydrogel composites for transdermal drug delivery. *Drug Delivery and Translational Research*. 2024; 14(3):598–615. doi:10.1007/s13346-023-01346-0.
53. Kim Y, et al. Hydrogel-nanoparticle hybrid systems for targeted transdermal drug delivery. *Small*. 2023; 19(50):2304998. doi:10.1002/smll.202304998.
54. Singh B, Kumar R. Liposome-integrated hydrogels for improved transdermal delivery of anticancer drugs. *International Journal of Pharmaceutics*. 2025; 679:119280. doi:10.1016/j.ijpharm.2024.119280.
55. Chen J, Li Q. Polymeric nanoparticle-loaded hydrogels for sustained transdermal release. *ACS Applied Polymer Materials*. 2024; 6(3):1050–1065. doi:10.1021/acsapm.3c01760.
56. Wang P, Liu X. Dendrimer-modified hydrogels for enhanced skin permeation of large molecules. *Journal of Controlled Release*. 2023; 365:345–358. doi:10.1016/j.jconrel.2023.01.003.
57. Fan Y, et al. Hydrogels with tunable rheology and biocompatibility for topical drug delivery. *Biomaterials Science*. 2021; 9(12):4057–4076. doi:10.1039/D1BM00220A.
58. Ma T, et al. Engineered exosomes with ATF5-modified mRNA loaded in injectable thermogels alleviate osteoarthritis by targeting the mitochondrial unfolded protein response. *ACS Applied Bio Materials*. 2024; 7(5):3110–3123. doi:10.1021/acsabm.3c02094.
59. Sharma B, et al. Cobalt-adenosine monophosphate supramolecular hydrogel with pH-responsive multi-nanozymatic activity. *ACS Applied Bio Materials*. 2023; 6(11):5018–5029. doi:10.1021/acsabm.3c00644.
60. Sun W, Zhang Y. Graphene oxide-integrated hydrogels for transdermal delivery and sensing applications. *Advanced Materials*. 2024; 36(18):2310050. doi:10.1002/adma.202310050.
61. Wang Y, Li C. Recent advances in 3D printing hydrogel for topical drug delivery. *ResearchGate Preprint*. 2025. doi:10.13140/RG.2.2.00000.
62. Adusumilli V. The future of medicine: how 3D printing is transforming pharmaceuticals. *Pharmaceutics*. 2025; 17(3):390. doi:10.3390/pharmaceutics17030390.
63. Chen X, Liu Y. 3D printing of personalized microneedle patches using hydrogel bioinks. *Additive Manufacturing*. 2024; 77:103550. doi:10.1016/j.addma.2024.103550.
64. Singh H, et al. 3D-printed hydrogel scaffolds for drug delivery and tissue regeneration. *Biofabrication*. 2023; 15(4):042001. doi:10.1088/1758-5090/acf65e.
65. Bagheri A, Farokhzad OC. 3D printing for personalized drug delivery: current status and future perspectives. *Advanced Drug Delivery Reviews*. 2023; 203:114620. doi:10.1016/j.addr.2023.114620.
66. Zhang L, Wang J. Customization of transdermal patches via 3D printing of hydrogel-based formulations. *International Journal of Pharmaceutics*. 2024; 660:128290. doi:10.1016/j.ijpharm.2023.128290.
67. Yu S, Li R. Multi-material 3D printing of hydrogels for complex transdermal drug delivery systems. *Materials Today Bio*. 2023; 22:100800. doi:10.1016/j.mtbio.2023.100800.
68. Gao X, Du Y. On-demand 3D printing of hydrogels for point-of-care transdermal drug delivery. *ACS Central Science*. 2025; 11(3):600–615. doi:10.1021/acscentsci.4c01020.
69. Patel D, Shah B. 3D printing hydrogels for enhanced patient compliance in transdermal therapy. *Journal of Pharmaceutical Sciences*. 2024; 113(5):1400–1415. doi:10.1016/j.xphs.2023.12.018.

70. Kim JY, et al. Advancements in 3D bioprinting of hydrogels for skin tissue engineering and localized drug delivery. *Biofabrication*. 2023; 16(1):012001. doi:10.1088/1758-5090/ad10b4.
71. Buwalda SJ, Vermonden T, Hennink WE. Hydrogels for therapeutic delivery: current developments and future directions. *Biomacromolecules*. 2023; 24(1):1–17. doi:10.1021/acs.biomac.2c01087.
72. Khan R, Alam P, Shah J, Khan A. Challenges and future prospects associated with smart hydrogels for drug delivery and imaging. *ResearchGate Preprint*. 2023. doi:10.13140/RG.2.2.00000.
73. Wang P, Liu Q. Manufacturing challenges and regulatory considerations for hydrogel-based transdermal patches. *Journal of Pharmaceutical Sciences*. 2024; 113(1):1–10. doi:10.1016/j.xphs.2023.07.019.
74. Yu D, Yang X. Overcoming skin barrier challenges with advanced hydrogel strategies for transdermal drug delivery. *International Journal of Pharmaceutics*. 2025; 680:119290. doi:10.1016/j.ijpharm.2024.119290.
75. Smith A, Brown P. Towards personalized medicine: the role of hydrogels and AI in future transdermal drug delivery. *Advanced Healthcare Materials*. 2023; 12(45):2302000. doi:10.1002/adhm.202302000.
76. Liu C, Zhang Y. Biocompatibility and long-term stability of hydrogels for chronic transdermal applications. *Acta Biomaterialia*. 2024; 176:1–15. doi:10.1016/j.actbio.2023.12.001.
77. Wu S, Li M. Scaling up production of advanced hydrogel systems for clinical translation. *Trends in Biotechnology*. 2023; 41(11):1335–1348. doi:10.1016/j.tibtech.2023.05.006.
78. Park HS, Kim JH. Future of wearable hydrogel devices for integrated diagnostics and therapeutics. *ACS Nano*. 2025; 19(5):3200–3215. doi:10.1021/acsnano.4c09876.
79. Chen R, Wang L. Regulatory pathways for novel hydrogel-based drug-device combination products. *Regulatory Toxicology and Pharmacology*. 2024; 151:105650. doi:10.1016/j.yrtph.2024.105650.
80. Lee J, Park K. Self-healing hydrogels for enhanced durability in transdermal drug delivery. *Advanced Materials*. 2023; 35(40):2303000. doi:10.1002/adma.202303000.
81. Yang Y, et al. Hydrogels in cancer treatment: mapping the future of precision drug delivery. *Frontiers in Immunology*. 2025; 16:1607240. doi:10.3389/fimmu.2025.1607240.
82. Zhou H, Liu Y. Advances in polymeric hydrogels for wound healing and drug delivery. *Biomaterials*. 2024; 308:122500. doi:10.1016/j.biomaterials.2023.122500.
83. Singh S, Garg T. Recent progress in injectable hydrogels for local drug delivery. *Journal of Controlled Release*. 2023; 360:1–20. doi:10.1016/j.jconrel.2023.06.014.
84. Liu J, Wang H. Multifunctional hydrogels with antimicrobial and anti-inflammatory properties for skin applications. *Applied Materials Today*. 2025; 40:102500. doi:10.1016/j.apmt.2024.102500.
85. Kim DY, Park J. Hydrogel-based transdermal patches for personalized medicine. *International Journal of Pharmaceutics*. 2024; 665:118480. doi:10.1016/j.ijpharm.2023.118480.
86. Ma X, et al. Engineered exosomes with ATF5-modified mRNA loaded in injectable thermogels alleviate osteoarthritis by targeting the mitochondrial unfolded protein response. *ACS Applied Bio Materials*. 2024; 7(5):3110–3123. doi:10.1021/acsabm.3c02094.
87. Zangabad PS, et al. Recent advances in formulations for long-acting delivery of therapeutic peptides. *ACS Applied Bio Materials*. 2023; 6(9):3532–3554. doi:10.1021/acsabm.3c01327.

88. Agarwal V, et al. Ultrasound-triggered amoxicillin release from chitosan/ethylene glycol diglycidyl ether/amoxicillin hydrogels having a covalently bonded network. *ACS Omega*. 2024; 9(1):585–597. doi:10.1021/acsomega.3c05428.
89. Yi YH, et al. Injectable temperature-sensitive hydrogel loaded with IL-36Ra for the relief of osteoarthritis. *ACS Biomaterials Science & Engineering*. 2023; 9(3):1672–1681. doi:10.1021/acsbiomaterials.2c01398.
90. Zhao X, Chu C. Current status and future directions of hydrogels in gene therapy. *Advanced Drug Delivery Reviews*. 2025; 215:114750. doi:10.1016/j.addr.2024.114750.