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Abstract

This systematic review examines the comparative use of attribute and variable control charts
in manufacturing processes, with a focus on np, p, ¢, and u charts versus X-R and S charts
across various industries. The primary purpose of this study is to analyze how these two
categories of control charts differ in application, sensitivity, and effectiveness for process
monitoring and quality improvement. A comprehensive literature-based synthesis was
conducted using peer-reviewed articles from Scopus, ScienceDirect, and SpringerLink
databases published between 2000 and 2025. Studies were selected based on relevance to
statistical process control (SPC) and their documented applications in sectors such as
automotive, pharmaceutical, electronics, and textile manufacturing. The findings reveal that
attribute control charts are highly effective for monitoring discrete data such as defect counts
and proportions, providing simplicity and ease of implementation. In contrast, variable
control charts are more suitable for continuous process data, offering greater precision and
sensitivity in detecting small process variations. Comparative evidence suggests that
combining both chart types can enhance process capability analysis in complex production
systems. Emerging trends highlight a growing shift toward automation, integration of
multivariate control charts, and the adoption of artificial intelligence (AI)-driven SPC tools
for real-time monitoring and predictive quality management. The review concludes by
emphasizing the need for hybrid and intelligent control systems to meet the evolving
demands of Industry 4.0 manufacturing environments.

Keywords: Statistical Process Control (SPC); Attribute Control Charts; Variable Control
Charts; Manufacturing Processes; Quality Control; Industry 4.0; Al-driven SPC

1.Introduction

1.1 Background

Quality control has long been recognized as the cornerstone of manufacturing excellence. It
ensures that processes consistently produce outputs that meet customer requirements, reduce
waste, and enhance productivity. Among the various quality control techniques, Statistical
Process Control (SPC) stands as one of the most influential and enduring methodologies for
achieving continuous improvement. Developed in the 1920s by Walter A. Shewhart at Bell
Laboratories, SPC introduced the concept of using statistical techniques to monitor and
control manufacturing processes. Shewhart’s pioneering work laid the foundation for
distinguishing between common causes and special causes of variation, thus enabling
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manufacturers to detect process instability and take corrective actions before defects occur.
(Shewhart, 1931; Malindzakova, Culkova, & Trpcevska, 2023)

Over the decades, SPC has evolved from manual chart plotting to highly automated,
computer-assisted systems capable of real-time data analysis. Its central goal remains the
same—to maintain process stability and ensure product quality through systematic
observation and data-driven decision-making. Control charts, the visual tools of SPC, serve
as early warning systems that help identify deviations from expected performance. By
distinguishing random (natural) variability from assignable (abnormal) causes, these charts
enable organizations to sustain high-quality production, minimize rework, and improve
overall process capability.

In the context of modern manufacturing, SPC plays an increasingly strategic role. Industries
such as automotive, pharmaceutical, electronics, and textiles rely on SPC to comply with
stringent quality standards, optimize resources, and ensure consistency in global supply
chains. As manufacturing transitions toward Industry 4.0, integrating data analytics, cyber-
physical systems, and artificial intelligence (Al), the application of SPC tools has become
more sophisticated and dynamic, supporting predictive quality management and autonomous
decision-making.

1.2 Problem Context

Despite the widespread use of SPC, one critical area that requires deeper understanding is the
distinction and comparative applicability of attribute and variable control charts. Attribute
data represent qualitative characteristics that are count-based—such as the number of
defective units or the proportion of defects in a sample. Charts like np, p, ¢, and u are used for
monitoring such discrete outcomes. These charts are simple to construct and widely used
when measurements are not feasible or practical.

On the other hand, variable data are quantitative and measurement-based, capturing
continuous characteristics such as diameter, weight, or temperature. X~R and S charts are
common tools for such data, offering greater sensitivity to small shifts in process mean or
variability. However, implementing variable charts requires precise measurement systems and
robust data collection mechanisms.

The rapid evolution of manufacturing environments, characterized by automation, sensor
integration, and real-time analytics, has created a growing need to systematically compare
these two categories of control charts. As industries increasingly adopt smart manufacturing
practices, understanding the contexts in which each chart performs optimally—and how they
can be integrated—is vital. Moreover, the traditional static nature of control charts is being
challenged by the dynamic, high-velocity data streams of modern production systems.
Consequently, revisiting their comparative effectiveness under contemporary conditions is
both timely and essential.

1.3 Literature Review
Historical foundations and scope of SPC

Statistical Process Control (SPC) originated with Walter A. Shewhart’s work in the 1920s—
1930s and the development of control charts to separate common-cause from special-cause
variation (Shewhart, 1931). Subsequent quality thinkers (e.g., Deming, Juran) and textbook
expositions (Montgomery) consolidated SPC as an indispensable statistical framework for
monitoring manufacturing processes, performing capability analysis, and supporting
continuous improvement programs. The Shewhart £36 control-limit principle and the
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concepts of in-control vs out-of-control remain the conceptual backbone of modern SQC
practice.

Attribute control charts: principles and recent developments

Attribute (count-based) charts — principally the np, p, ¢, and u charts — are used where
inspection yields qualitative outcomes (defective/nondefective) or counts of defects per unit.
Classical treatments (binomial model for p/np charts, Poisson model for c/u charts) continue
to underpin their design and interpretation; their simplicity, low measurement cost, and
applicability to high-volume inspection explain their persistent industrial use (Woodall, 2000;
NIST/ITL handbook). Recent work has focused on robustness and automation:

» Automated defect detection: The integration of machine-vision systems and automated
defect counting pipelines has renewed interest in attribute SPC because vision systems feed
continuous streams of count data directly into p/c/u charts, enabling near-real-time
monitoring (Zhang et al., 2024).

» Sampling and improved sensitivity: Modifications to sampling plans and dependent-state
sampling have been investigated to increase the sensitivity of attribute charts while
preserving low inspection cost (Aslam, Khan & Albassam, 2019).

* Variable parameter and time-varying Poisson models: Contemporary studies (e.g.,
Satacinski et al., 2023) examine how parameter variability (e.g., changing defect
opportunities) affects control-limit calculation for Poisson-based charts and propose
generalized control rules.

Variable control charts: precision measurement and extensions

Variable charts (X—R; X—S) monitor continuous quality characteristics and are more sensitive
to small shifts in process mean or dispersion. They are widely applied in machining, precision
assembly, and process industries where accurate measurements are available. Key
developments include:

 Adaptive limits and time-truncated charts: Research into adaptive or time-truncated control
limits aims to maintain sensitivity while reducing false alarms in non-stationary processes
(Kumar & Joshi, 2023). Such approaches are particularly relevant when process behavior
evolves over production runs.

* Integration with capability analysis: Variable charts are often used together with capability
indices (Cp, Cpk) to quantify how well a controlled process meets specifications
(Montgomery, 2019).

* Real-time sensor integration: As measurement data become available from IoT sensors and
CNC systems, X—R and S charts are being implemented in streaming architectures for
continuous monitoring and automated alerts (Chen et al., 2024).

Comparative and hybrid approaches: attribute vs variable charts

Comparative studies consistently report the complementary strengths of attribute and variable
charts: attribute charts are low-cost and practical for defect monitoring, while variable charts
provide superior early detection of small process drifts. Empirical industry studies (e.g.,
automotive and electronics case studies) show improved detection and decision support when
both chart types are used together—attribute charts for pass/fail metrics and variable charts
for dimensional control (Bersimis & Psarakis, 2023; Castagliola et al., 2024). Nonetheless,
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standardized methods for fusing attribute and variable information (e.g., joint alarm rules,
composite indices) remain underdeveloped.

SPC in Industry 4.0: multivariate methods, Al, and real-time control
The digitalization of manufacturing has driven several important research directions:

» Multivariate SPC: Hotelling’s T2, MEWMA, and PCA-based SPC address correlated
multiple quality characteristics; these methods are essential where quality is multi-
dimensional (Bersimis et al., 2023).

* Machine learning and predictive SPC: ML techniques (supervised classifiers, anomaly
detectors, and deep learning) are being investigated for predictive quality monitoring that
anticipates out-of-control conditions before they manifest on conventional charts (Garg et al.,
2025; Zhou et al., 2024).

* Cyber-physical integration: Linking SPC to I1oT platforms and digital twins enables closed-
loop responses (automated alarms, maintenance scheduling), but raises challenges related to
data reliability, latency, and interpretability.

1.4 Objectives

This paper aims to conduct a systematic review of attribute and variable control charts in
manufacturing processes, focusing on their comparative strengths, weaknesses, and industrial
applications. Specifically, the objectives are:

1. To compare the characteristics and statistical foundations of attribute and variable
control charts, emphasizing their suitability for different types of manufacturing data.

2. To evaluate the effectiveness, applicability, and limitations of np, p, ¢, and u charts in
comparison with X—R and S charts across various industrial domains such as
automotive, pharmaceutical, electronics, and textile sectors.

3. To identify research and practical gaps in the existing literature concerning hybrid,
automated, or Al-driven SPC systems.

4. To propose future directions for integrating traditional SPC tools with emerging
technologies such as machine learning, loT, and real-time data analytics to enhance
predictive quality control.

2. Theoretical Foundation (SQC Overview)

This section presents the theoretical foundation of Statistical Quality Control (SQC) with a
particular focus on Statistical Process Control (SPC) and the classification of control charts.
SQC forms the backbone of modern quality assurance systems, ensuring that manufacturing
and service processes operate efficiently, consistently, and within acceptable limits. SPC, as a
subset of SQC, utilizes statistical tools to monitor and control variability in production
processes, thereby enhancing reliability, product uniformity, and customer satisfaction.

2.1 Concept of Statistical Process Control (SPC)

2.1.1 Definition and Goals of SPC

Statistical Process Control (SPC) is a methodological approach used to monitor, control, and
improve a process through statistical techniques. SPC aims to ensure that processes remain
stable and capable of producing output that meets specifications. The primary goal of SPC is
not merely to inspect quality after production but to prevent defects by identifying and
controlling sources of variation during the process itself.

PAGE NO : 120



Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 11

In essence, SPC emphasizes process stability and continuous improvement. By analyzing
process data, SPC helps organizations distinguish between normal, expected variability and
unusual, assignable causes that require corrective action. This proactive approach reduces
waste, rework, and inspection costs while ensuring consistent quality output. SPC tools,
particularly control charts, provide visual insights into process behavior over time and serve
as a scientific foundation for decision-making in quality management.

2.1.2 Common Cause vs. Special Cause Variation

A fundamental principle of SPC is understanding the nature of process variability. Every
process exhibits variation, but not all variation is of the same kind. Shewhart classified
variability into two categories:

1. Common Cause Variation (Natural Variation):

e These are inherent fluctuations present in any process due to random factors
such as minor environmental changes, machine wear, or human differences.

e They are stable, predictable, and part of the process’s normal operation.

e A process influenced only by common causes is said to be in control and
stable over time.

2. Special Cause Variation (Assignable Variation):

e These variations occur due to identifiable, external, or unexpected factors that
disturb process stability—such as a broken tool, equipment malfunction,
wrong material input, or operator error.

e Special causes indicate that the process is out of control and requires
immediate investigation and corrective action.

Understanding the distinction between these two types of variation is vital in SPC because it
determines whether process changes are necessary. Corrective measures for common cause
variation typically involve process redesign or improvement, whereas special causes require
immediate root-cause analysis and removal of the disturbance.

2.1.3 Importance of Control Limits (£36 Concept)

Control charts are the most powerful and widely used SPC tools because they graphically
display data over time and indicate whether a process is operating within statistically
acceptable limits. These limits are established using the concept of standard deviation (o),
which measures the dispersion of data around the process mean.

Control limits are not the same as specification limits; they are statistically derived
boundaries based on process data. The three key horizontal lines on a control chart are:

o Center Line (CL): Represents the process average or expected value.
o Upper Control Limit (UCL): Located at +3c from the mean.

e Lower Control Limit (LCL): Located at -3¢ from the mean.
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Mathematically, the control limits are defined as:

UCL = Mean + 30
LCL =Mean - 3¢

The +30 range captures approximately 99.73% of all data points under a normal distribution,
implying that any observation outside these limits is statistically unusual and likely due to a
special cause.

If points fall within control limits but display non-random patterns (e.g., trends, cycles, or
systematic shifts), the process may still be unstable, requiring further investigation. Thus,
control limits serve as early warning indicators, helping quality practitioners detect potential
problems before they result in defective output.

SPC’s reliance on control limits allows for data-driven decision-making, reducing
subjectivity and ensuring process corrections are made only when justified by statistical
evidence.

2.2 Classification of Control Charts

Control charts are the core instruments of SPC. They are designed to track process behavior
over time and detect variations that may signify process instability. Broadly, control charts
are classified into two main types based on the nature of data being monitored: attribute
control charts and variable control charts.

Techniques of SQC

|
! |

Process Control Product Control
(By Control Charts) (By Sampling Inspection plans)
| — [
Variables Attributes Attributes Variables
X-chart c-chart
R-chart np-chart
a-chart P-chart
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2.2.1 Attribute Control Charts

Attribute control charts are used when the data collected from a process are discrete or count-
based, meaning the characteristics are judged as either conforming or nonconforming to
quality standards. These charts are appropriate when it is impractical or impossible to
measure a continuous variable for each unit produced.

Common examples of attribute data include the number of defective products, the proportion
of defectives in a batch, or the count of defects per unit. Attribute charts are based on the
binomial or Poisson probability distributions, depending on the type of data collected.

The four principal types of attribute control charts are:
1. np Chart (Number of Defectives Chart): (NIST/ITL, n.d.; Perkasa, 2021)

o Used when the sample size is constant, and the number of defective items is
recorded.

o Example: Monitoring the number of faulty bolts in each sample of 200

produced.
2. p Chart (Proportion Defective Chart): (4slam, Khan, & Albassam, 2019; NIST/ITL,
n.d.)
o Applied when the sample size varies, and the proportion of defectives is
measured.

o Example: Tracking the proportion of defective printed circuit boards in daily
samples.

3. ¢ Chart (Count of Defects Chart): (Safacinski, Chrzanowski, & Chmielewski, 2023)

o Suitable when counting the number of defects per inspection unit, assuming a
constant area or opportunity for defects.

o Example: Number of surface scratches per metal sheet inspected.
4. u Chart (Defects per Unit Chart): (Woodall, 2000; NIST/ITL, n.d.)

o Used when the inspection unit size varies and the data represent defects per
unit.

o Example: Number of software bugs per 1,000 lines of code across modules of
varying lengths.

Attribute charts are easy to construct and interpret, making them suitable for routine quality
monitoring. However, their limitation lies in lower sensitivity, as they detect only relatively
large shifts in process performance compared to variable charts.
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2.2.2 Variable Control Charts (Montgomery, 2019; Kumar & Joshi, 2023, Chen et al.,
2024)

Variable control charts are used when process data are continuous and measurable on a
numerical scale. They provide more detailed information about process behavior, making
them ideal for detecting small shifts in mean or variability. These charts assume that the
quality characteristic follows an approximately normal distribution.

The two most commonly used variable charts are:
1. X-R Chart (Mean and Range Chart):
o The X Chart monitors changes in the process mean over time.

o The R Chart tracks the range (difference between maximum and minimum
values) within each subgroup, reflecting process dispersion.

o Widely used for small subgroup sizes (n < 10) in industries like automotive
and electronics.

2. S Chart (Standard Deviation Chart):

o Similar to the R chart but uses the standard deviation (S) as a measure of
dispersion, making it more accurate for larger subgroup sizes.

o Suitable for continuous monitoring in high-precision processes such as
pharmaceuticals and aerospace manufacturing.

Variable charts are more statistically sensitive than attribute charts, allowing early detection
of minor shifts that could lead to defects if not corrected. However, they require accurate
measurement systems and consistent sampling to ensure reliability.
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3. Attribute Control Charts — Concepts and Applications

Attribute control charts play a central role in quality management when the process data are
qualitative or count-based rather than continuous. In such cases, each product or service
outcome is classified as defective or non-defective, or the number of defects is counted per
inspection unit. These charts are based on binomial or Poisson probability models, depending
on whether the data represent defectives (binary outcomes) or defects (count data).

A key element in constructing any control chart is the determination of control limits, which
act as statistical thresholds distinguishing normal process variation from abnormal or
assignable causes. Control limits can be established in two ways:

1. When Standards Are Specified — limits are based on known or prescribed defect
rates defined by industrial standards, customer tolerances, or process capability
indices.

2. When Standards Are Not Specified — limits are empirically estimated from the
observed process data, following Shewhart’s principle that control comes from actual
process behaviour, not assumed targets.

3.1 np (or) d Chart (Number of Defectives Chart)

The np (or) d chart monitors the number of defective units in samples of constant size. It is
suitable for processes where inspection involves a fixed number of units each time, and the
outcome for each unit is either defective or non-defective.

Control Limits

e Standards Specified:
When a predetermined acceptable defect rate pyexists (e.g., regulatory limits in
electronics assembly or packaging defect thresholds), the control limits are:

CL = np,,
UCL = npy + 3y npo(1 — py),

LCL = npy — 3ynpo(1 — po)

These limits indicate the process’s expected variation if it meets the target defect rate.

o Standards Not Specified:
When no prior benchmark exists, limits are estimated from sample data:

_ _ Jdefectives
p= n
CL = np,

UCL =np + 3np(1 — p),

LCL =np — 3/np(1 —p)

This method reflects actual process performance rather than theoretical expectations.
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Interpretation

If sample counts fall consistently within limits and show random scatter, the process is stable.
Any point beyond the limits or systematic pattern (trend, cycle) indicates special cause
variation.

Applications

Widely used in electronics, textile, and food packaging industries for monitoring fixed batch
outputs—e.g., number of defective circuit boards per 100 tested.

3.2 p Chart (Fraction Defective Chart)

The p chart is an extension of the np chart for situations with variable sample sizes. It tracks
the proportion of defective units rather than their count, allowing consistent evaluation
despite changing inspection volumes.

Control Limits

e Standards Specified:
When an acceptable defect fraction pyis known (e.g., ISO tolerance level or Six
Sigma target):

CL = Po,

, 1—
UCL = po + 3 Po( po),
n
, 1—
LCL = py — 3 Po( ~ Do)

o Standards Not Specified:
In most industrial applications, control limits are derived from observed process data:

_ _ Jdefectives
p= s
CL=p
5(1 — 5
UCL=p+3 P ),
5(1— 5
LCL=p—-3 pd —p)
n

For each sample, limits adjust according to sample size n;, providing dynamic control
boundaries.
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Interpretation

A stable p chart indicates that the proportion defective remains consistent with natural
variation. Significant deviations imply potential changes in process inputs, supplier quality, or
machine calibration.

Applications

Commonly applied in pharmaceutical, consumer goods, and automotive component
industries, where batch sizes vary due to production schedules or inspection constraints.

Modern Use

Automated SPC software systems often integrate p charts for real-time batch quality
dashboards, enabling process engineers to compare defect rates across shifts and production
lines.

3.3 ¢ Chart (Count of Defects per Unit)

The ¢ chart tracks the number of defects (not defectives) observed within a constant
inspection unit, area, or time frame. The data typically follow a Poisson distribution, as
defects are random and rare events occurring within fixed opportunities.

Control Limits

e Standards Specified:
If the target defect count per unit is known (c,), limits are calculated as:

CL:CO,
UCL = ¢y + 3,/co,
LCL = ¢y —3./cy

o Standards Not Specified:
When standards are absent, limits rely on sample data:

k

CL=¢,
UCL = ¢ + 3¢,
LCL = ¢ — 3¢

If LCL < 0, it is adjusted to zero since defect counts cannot be negative.
Interpretation

Points exceeding UCL suggest special causes like equipment misalignment or material
defects. Sustained trends below CL might indicate over-adjustment or improved quality
performance.
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Applications

Used extensively in automotive, metal finishing, printing, and aerospace sectors for
monitoring surface flaws, paint bubbles, or assembly defects.

Advantages & Modern Extensions
o Easily interpretable in visual inspection environments.

e In advanced systems, Al vision tools now generate c-chart data automatically from
camera-based defect detection systems.

3.4 u Chart (Defects per Unit with Variable Sample Size)

The u chart generalizes the ¢ chart by allowing variable inspection areas or sample sizes. It
plots the average number of defects per unit, offering normalized defect density measures.

Control Limits

e Standards Specified:
When the expected defect rate per unit (1) is known:

CL S uo,

Ug
UCL; =uy+3 |—,
n;

LCL; =u 3 0
: 0 n;
o Standards Not Speciﬁed:

When historical process data are used:

pXe!
>

u=

UCLL=11+3 -

n;

Control limits vary for each sample, adapting to changing unit sizes.
Interpretation

When plotted over time, the u chart helps identify periods of abnormal defect densities or
inspection irregularities. Variation in sample size can lead to differing control widths, which
must be interpreted carefully.
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Applications

Ideal for textile, semiconductor, healthcare, and service industries, where inspection
opportunities differ (e.g., fabric meters, wafers per batch, or patient cases per day).

Advantages and Industrial Relevance

e Provides standardized monitoring across unequal inspection volumes.

e Commonly used in Statistical Quality Assurance (SQA) for multi-site production
analysis, enabling global manufacturers to benchmark defect performance across

facilities.

3.5 Comparative Analysis of Attribute Charts and Control Limit Basis

Chart | Data Sample | Distribution | When Standards | When Example
Type Size Specified Standards Not Applications
Specified
np Defectives | Fixed Binomial UCL UCL Electronics
= np, =np assembly,
+3/npe(1 —po) | +3/np(1—p) | backaging
p Fraction | Variable | Binomial Po p Food &
defective +3po(1 = py)/n | +3p(1 —p)/n | pharma
quality control
c Defects Fixed Poisson co+3 \/C_o ¢+ 3¢ Paint &
per item surface defect
monitoring
u Defects Variable | Poisson Uy + 3/ug/n; @+ 3/u/n; Textile &
per unit semiconductor
QC

4. Variable Control Charts — Concepts and Applications

Variable control charts are a core component of Statistical Process Control (SPC), specifically
designed to monitor quantitative or measurable data. Unlike attribute charts, which classity
items as defective or non-defective, variable charts track continuous measurements such as
diameter, weight, temperature, or tensile strength. These charts are particularly useful for
detecting small shifts in process mean or variability, enabling timely corrective action before
product quality deteriorates.

The central principle behind variable charts is that every process exhibits two dimensions of
variation:

1. Central tendency (mean) — representing the location or average performance of the

process.

2. Dispersion (range or standard deviation) — representing the spread or consistency
of process data.
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By plotting these characteristics over time, variable control charts help quality engineers
determine whether the process is stable and predictable (in statistical control) or unstable
(affected by assignable causes).

4.1 X-R Chart (Mean and Range Chart)

The X—R Chart is the most widely used variable control chart for subgrouped data with
small sample sizes (n < 10). It consists of two separate but complementary charts:

e X Chart: Monitors changes in the process mean (central tendency).

e R Chart: Monitors changes in the range (difference between the maximum and
minimum values) within each subgroup, reflecting variability.

Together, these charts provide a comprehensive view of process performance — whether the
process average is drifting and whether its variability remains under control.

4.1.1 Purpose and Function

The X-R chart is ideal when measurements are taken from subgroups of similar items
produced under consistent conditions. It detects small to moderate shifts in both mean and
spread and is widely applicable in real-time production monitoring.

Example: In a machining operation producing shafts, five samples are taken every hour. The
diameters are measured, the average (X) and range (R) are computed, and plotted on the
control chart to check whether the machine remains centered and stable.

4.1.2 Control Limits

A. When Standards Are Specified:
If the process standard deviation (c) or target mean (L) is known from design or historical
data, control limits can be set based on those specified parameters.

e For the X Chart:
CL = Ho,

UCL = Ho +A2R,

LCL = Ho — AzR

e For the R Chart:

CL =R,
UCL = D,R,
LCL = D3R

Here, A,, D3, D,are control chart constants that depend on subgroup size (n).

B. When Standards Are Not Specified:
When no preset standard exists, control limits are estimated from sample data:

o Compute the average of subgroup means Xand the average range R:
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- (; R;
where £ is the number of subgroups.
o Then, the control limits are:
e For X Chart:
CL =X,
UCL = X + A,R,
LCL = X — A,R
e For R Chart:
CL =R,
UCL = D4R,
LCL = D3R

If LCLi < 0, it is set to zero because range cannot be negative.
4.1.3 Interpretation
o Stable Process: Points randomly distributed within limits.

o Mean Shift: Several points consecutively above or below the center line on the X
chart.

o Increased Variability: Points beyond UCL on the R chart indicate abnormal spread
due to tool wear, machine vibration, or inconsistent materials.

4.1.4 Advantages:

e Provides simultaneous monitoring of mean and variability.

e Simple to construct and widely understood by engineers.

o Effective for detecting both sudden and gradual process changes.
4.1.5 Limitations:

e Less precise for large subgroup sizes (n > 10).

e Assumes normal distribution and constant sample size.
4.1.6 Industrial Applications:

e Machining operations (e.g., shaft diameter, hole depth)

e Assembly lines where subgroup samples are periodically drawn

e Manufacturing tolerance control in automotive, metal, and electronic component
production

PAGE NO : 131



Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 11

In modern manufacturing, X—R charts are frequently integrated into SPC dashboards,
providing live feedback from CNC machines and [oT sensors, thereby enhancing process
traceability and predictive maintenance.

4.2 S Chart (Standard Deviation Chart)

The S Chart (or X—S Chart) is used when subgroup sizes are larger than 10. It replaces the
range (R) with the standard deviation (S) as a measure of variability. Standard deviation
provides a more reliable and statistically efficient estimate of process dispersion, especially
when subgroup sizes are large.

Like the X—R chart, the X-S chart consists of two parts:

e X Chart: Monitors process mean.

e S Chart: Monitors process variability (based on standard deviation rather than range).
4.2.1 Control Limits

A. When Standards Are Specified:
If target mean (po) and standard deviation (o) are known:

o For X Chart:
CL = Mo, UCL = Ho +A3.§,LCL = U _A3.§

e For S Chart:
CL = S,,UCL = B,S,,LCL = B3S,

B. When Standards Are Not Specified:
When calculated from sample data:

1. Compute the overall mean of subgroup means Xand the average standard deviation S:

:ZXL' 5‘:&
k' k

<

2. Determine the control limits:

o For X Chart:

UCL =X + A3S,CL = X,LCL = X — A3S

o For S Chart:
UCL = B,S,CL =S,LCL = B;3S
The constants A5, B3,and B,depend on subgroup size (n) and are available in SPC reference

tables.

4.2.2 Interpretation
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e The S chart provides smoother and more accurate estimation of variability than the R
chart, particularly for large subgroups.

o Consistent S values indicate stable process dispersion; increasing or fluctuating values
suggest process inconsistency.

o The X chart identifies shifts in process mean that could result from tool wear,
calibration drift, or raw material inconsistency.

4.2.3 Advantages:
e More accurate than R charts for large n (>10).
o Better statistical representation of dispersion.
o Suitable for processes requiring tight tolerance and precision.
4.2.4 Limitations:
e More complex calculations compared to range-based methods.
e Requires computational tools or SPC software for real-time application.
4.2.5 Industrial Applications:
o Precision engineering: Tolerances in aerospace or optical component manufacturing.

e Pharmaceutical production: Monitoring concentration, viscosity, or tablet weight
consistency.

e Chemical processes: Tracking variation in pH, temperature, or reaction time.

With the rise of digital manufacturing systems, S charts are now embedded in automated
quality monitoring software, allowing data from multiple sensors to be aggregated and
analyzed in real time.

4.3 Comparative Table of Variable Charts

Chart | Subgroup Monitored Data Type | Common Use / Industry

Type Size (n) Parameter

X-R <10 Process Mean & | Continuous | General process monitoring,

Chart Range machining, assembly lines

X-S >10 Process Mean & | Continuous | High-precision industries such

Chart Standard as pharmaceuticals, aerospace,
Deviation and electronics

5. Comparative Overview of Attribute and Variable Charts (Bersimis & Psarakis, 2023;
Castagliola et al., 2024)

Aspect Attribute Control Charts Variable Control Charts

Data Type Discrete or count-based data (e.g., | Continuous or measurable data
number of defectives, proportion | (e.g., diameter, weight,
temperature, tensile strength).
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defective, or number of defects per
unit).

Typical Statistical | Binomial or Poisson distributions | Assumed to follow a normal

Distribution depending on whether the chart distribution for sample means
tracks defectives (p, np) or defects | and variability measures (X-R,
(c, u). X-S).

Monitored Quality classification or frequency | Actual measurement of process

Characteristic of non-conformance. characteristic (mean and

variation).

Sensitivity to
Process Changes

Lower - detects major process
shifts or trends in defect counts.

Higher - detects minor
variations in mean or standard
deviation, providing early
warning signals.

Type of Data
Collection

Based on inspection outcomes or
defect counts (go/no-go data).

Based on quantitative
measurements obtained
through instruments or sensors.

Sample Size
Requirement

Larger sample sizes needed for
reliable estimation due to discrete
nature of data.

Smaller sample sizes sufficient
because continuous data
provide more information per
observation.

Control Limit
Basis

Derived from binomial or Poisson
probabilities (e.g., +3c limits
around defect proportion).

Derived from process mean
and standard deviation using
constants (Az, As, D3, D4, Bs,
Ba).

Ease of Simple to construct and interpret; | More complex; requires

Construction minimal computation required. statistical calculation of
subgroup means, ranges, or
standard deviations.

Cost of Low, as only counts or Relatively higher, requiring

Implementation classifications are required. measurement tools and trained

personnel.

Sensitivity to

Low sensitivity since classification

High sensitivity; measurement

Measurement errors are infrequent. precision directly affects chart
Error accuracy.

Industrial Preferred in service operations, Common in machining,
Applicability assembly lines, textiles, aerospace, automotive,

packaging, and consumer goods
manufacturing.

electronics, chemical, and
pharmaceutical processes.

Examples of
Charts

p, np, ¢, and u charts.

X-R and X-S charts.

PAGE NO : 134




Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 11

Typical Indicates the proportion or number | Indicates variation in central
Interpretation of nonconformities in a sample. tendency and spread of
measured data.

Best Suited For Processes where measurement is Processes where precision
difficult or cost-prohibitive, or measurements are available
when quality is determined by and quality is defined by
inspection outcomes. numerical tolerances.

6. Challenges and Research Gaps

Although Statistical Process Control (SPC) has been successfully applied for decades, several
limitations persist in adapting classical methods to modern, data-driven manufacturing
environments.

6.1 Handling of Autocorrelated and Non-Normal Data

Traditional SPC charts (X-R, p, ¢, u) assume that observations are independent and normally
distributed. However, process data in continuous or automated systems often show
autocorrelation and non-normality due to sensor feedback, automated control loops, or
physical process constraints.

e Such conditions lead to unreliable control limits and false alarms.

e Though corrective methods like residual charting and data transformation exist, they
are not fully standardized or widely implemented.
Hence, there is a need for robust SPC frameworks that can manage correlated,
skewed, or complex data patterns.

6.2 Real-Time SPC Integration with IoT and Al

Conventional SPC was designed for offline analysis, while modern industries require real-
time monitoring supported by IoT sensors and Al algorithms.

e Current systems struggle with large data volumes, integration issues, and latency in
decision-making.

o Few industrial implementations achieve full automation from data collection to
corrective action.
Developing Al-enabled, real-time SPC systems capable of adaptive control and
predictive alerts remains an open research challenge.

6.3 Limited Studies on Mixed Attribute—Variable Chart Integration

Manufacturing environments frequently involve both measurement-based (variable) and
count-based (attribute) quality characteristics. Despite this, most studies treat these chart
types separately.

e Research on hybrid SPC systems capable of analyzing both defect counts and
measurement variability is scarce.

o Comparative models integrating these chart types for holistic quality assessment are
needed, especially in hybrid industries such as automotive and electronics.

6.4 Need for Adaptive and Self-Learning Control Limits
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In smart factories, process parameters change dynamically due to automation, material
variability, or machine learning-based optimization. Static +3c limits are insufficient for such
adaptive environments.

e Self-learning control charts that adjust control limits based on historical and real-time
data can improve responsiveness.

o However, their interpretability, computational efficiency, and industrial validation
remain limited.
Research should focus on adaptive SPC systems that balance automation with
operator understanding and trust.

7. Emerging Trends and Future Directions
7.1 Multivariate Control Charts

Processes often involve interrelated variables where univariate charts are inadequate.
Multivariate SPC methods such as Hotelling’s T2, MEWMA, and PCA-based SPC allow
simultaneous monitoring of correlated quality characteristics. These methods are particularly
useful in chemical, semiconductor, and automotive industries where multidimensional control
is critical.

7.2 Machine Learning—Enhanced SPC

Combining SPC with machine learning (ML) techniques enables predictive quality
management. ML algorithms (e.g., SVM, Random Forests, Neural Networks) can detect
nonlinear relationships and predict process shifts before they occur.

o Integrating ML with SPC transforms monitoring from reactive to predictive,
enhancing early warning capabilities.

e Such systems can automatically identify root causes of variation, improving
preventive maintenance and process optimization.

7.3 Adaptive and Bayesian SPC Models (Bersimis et al., 2023, Garg et al., 2025, Zhou et
al., 2024)

Adaptive SPC dynamically updates control limits based on new data, improving sensitivity
in changing environments.

Bayesian SPC incorporates prior process knowledge, allowing probabilistic updates and
better handling of uncertainty.

Both approaches support continuous learning, aligning with the goals of Industry 4.0 where
systems evolve with process conditions.

7.4 Integration with Big Data, IloT, and Cyber-Physical Systems (MDPI, 2023;
Machines, 2024)

The convergence of SPC with Big Data analytics and Industrial Internet of Things (I1loT)
enables continuous, high-volume process monitoring.

e Cyber-Physical Systems (CPS) link real-world processes with digital simulations,
supporting real-time quality control through digital twins.

o Big Data—driven SPC enhances decision accuracy by analyzing vast, heterogeneous
data streams from sensors and machines.
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Future SPC systems will be cloud-integrated, intelligent, and self-correcting, turning data into
actionable insights for process improvement.

8. Conclusion

Statistical Process Control continues to be a cornerstone of quality management, helping
organizations ensure process stability and defect-free production. This review emphasizes
that attribute and variable control charts play complementary roles in modern manufacturing
systems.

o Attribute charts (p, np, c, u) efficiently track defect counts or proportions, making
them practical for high-volume inspection processes.

e Variable charts (X-R, S) offer greater precision and sensitivity, ideal for continuous
process monitoring and small-shift detection.

Together, they provide a balanced framework for both inspection-based conformance and
process-based improvement.

However, the transition to smart manufacturing and Industry 4.0 demands an evolution from
traditional SPC to intelligent, adaptive, and data-driven control systems. Integrating SPC with
Al 10T, and real-time analytics can transform quality management from a reactive to a
predictive and prescriptive discipline.

In the future, SPC systems will not merely monitor processes but will learn, predict, and
optimize them autonomously — creating self-regulating, self-improving quality ecosystems
that define the next era of manufacturing excellence.
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