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ABSTRACT 

Colorectal cancer (CRC) is the top contributor for cancer mortality worldwide. The current 

therapies are not effective as cancer emerge to be drug resistant. Curcumin, a phytochemical 

has revealed to be a promising drug for CRC therapy due to its anticancer, anti-inflammatory 

and antioxidant properties. Recent in vitro and in vivo studies have validated curcumin as a 

promising therapeutic agent for CRC. By applying bioinformatics, the CRC-associated hub 

genes were explored to study their relations with curcumin. This study performs an integrated 

computational approach to identify the hub targets for CRC and analyse them with curcumin. 

This study aimed to retrieve the differently expressed genes of CRC by GEO2R analysis and 

intersect the set with curcumin target genes set to identify the hub genes. The hub genes were 

further analyzed by molecular docking and survival analysis by Kaplan-Meier method. The 

integration of docking and survival analyses highlighted MAOA followed by EGFR as key 

prognostic and therapeutic targets for CRC therapy. Further studies in biological systems are 

essential to fully comprehend their mechanisms. 
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1. INTRODUCTION 

Colorectal cancer (CRC) is ranked as one of the topmost leads for cancer-related mortality and 

most diagnosed cancer worldwide [1]. Despite developments in therapeutics in surgery, 

radiotherapy, chemotherapy and pharmacological approaches, the survival rate for CRC 

remains low. Processes like cell proliferation, migration and invasion and apoptosis resistance 

are featured in the development of CRC. Cancer stem cells contribute to the initiation of cancer 

and builds resistance to chemotherapies [2]. The challenges demand a necessity for a new, 

accessible and affordable therapeutics. 

Curcumin, a polyphenol derived from the plant Curcuma longa, as a therapeutic candidate for 

cancer treatment [3]. It has therapeutic traits such as anti-inflammatory, antiangiogenic, 

antioxidant and anticancer [4]. This phytochemical has exhibited to inhibit the proliferation of 

CRC and inducing apoptotic activities. Preclinical and clinical studies have displayed the 

efficacy of curcumin to promote apoptosis in various cancers and a safe phytochemical for 

complementary therapy with chemotherapy [5,6]. 

Recent studies have validated curcumin as a promising therapeutic agent for CRC therapy in 

both in vitro and in vivo experiments [1]. It supresses several oncogenic signalling pathways 

such as Wnt/β-catenin (Wingless-related integration site/Beta-catenin) and EGFR/MAPK 

(Epidermal Growth Factor Receptor/ Mitogen-Activated Protein Kinase) pathway which 

causes proliferation in CRC, breast and pancreatic cancer [7,8]. Induction of apoptosis in CRC 

is modulated through targeting P13K/Akt (Phosphoinositide-3-Kinase/Protein Kinase B) 

pathway as curcumin eliminates the survival signal by inhibiting Akt [9]. It also supresses NF-

κB (Nuclear Factor Kappa-light-chain-enhancer of activated B cells) and STAT3 (Signal 

Transducer and activator of Transcription 3) signalling pathways by overriding the apoptotic 

mediators in CRC like Bcl-xL (B-cell lymphoma-x-Long), Bcl-2 (B-cell lymphoma 2) and 

survivin [9,10]. 

In this study, the differently expressed genes (DEGs) retrieved by GEO2R analysis was 

intersected with curcumin target genes obtained from SwissTargetPrediction to identify the 

hub genes. The hub genes were further analyzed by molecular docking to predict the binding 

affinity and molecular interactions between the hub genes and curcumin. Survival analysis was 

performed by Kaplan-Meier method to evaluate their prognostic potentials.   
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2. METHODOLOGY 

2.1 GEO2R Analysis 

For the detection of DEGs in normal colon mucosa cell line (NCM460) and CRC cell lines 

(HT29 and DLD1), GEO2R analysis was conducted. The samples were collected from GEO 

(https://www.ncbi.nlm.nih.gov/geo/) series dataset with accession number GSE68468 [11]. 

This dataset was chosen based on the relevance to the study and the number of samples 

available for each group. Two groups were made for comparison, normal and CRC. Normal 

group had 1 sample for NCM460 cell lines while the CRC group had 4 samples. The CRC 

group had 2 different cancer cell line, 1 sample of HT29 cell lines and 3 samples of DLD1 cell 

lines. Both the groups were analyzed and the DEGs were retrieved from the dataset. 

2.2 Retrieval of Curcumin Targets 

The Simplified Molecular Input Line Entry System (SMILES) notation for curcumin was 

obtained from PubChem database (https://pubchem.ncbi.nlm.nih.gov/) (CID- 969516) [12] and 

was used in SwissTargetPrediction (https://www.swisstargetprediction.ch/) to obtain the target 

genes of the ligand [13]. 

2.3 Hub Genes Selection 

A Venn diagram was constructed using an online tool, Venny 2.1 

(https://bioinfogp.cnb.csic.es/tools/venny/) to identify the overlapping gene between DEGs 

and curcumin targets set [14]. 

2.4 Molecular Docking 

PubChem and RCSB Protein Data Bank (https://www.rcsb.org/) was utilized to download the 

3D structure of the ligand and proteins [15]. Maestro from Schrödinger suite was used to 

perform molecular docking. Protein Preparation Wizard was used to the protein structures 

while the ligand was prepared for docking using LigPrep. Ligand docking was conducted in 

extra precision mode using the glide module [16]. The 3D structures for the docked protein-

ligand were visualized using PyMOL.   
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2.5 Kaplan-Meier Plot 

Kaplan-Meier plotter (https://kmplot.com/analysis/) was used to perform survival analysis for 

hub genes [17]. This is an online tool that is used to analyse the prognosis relevance of genes 

in cancer studies. 

3. RESULTS  

 

Figure 1: A. Volcano plot obtained from GEO2R analysis. B. Venn diagram constructed to 

identify the hub genes for CRC 

3.1 GEO2R Analysis 

The GEO2R analysis was performed for 2 groups with 1 sample in normal group and 4 samples 

in the CRC group. A total of 13297 DEGs were identified from with analysis, and they were 

presented with their P-value and log2 fold change threshold. The log2 fold change values were 

ranging from 7.25 to –7.07 and the top 218 DEGs were selected as target proteins. 

3.2 Curcumin Targets 

From SwissTargetPrediction, 100 possible targets for curcumin were identified out of which 

64 genes with the probability score greater than zero were considered as curcumin target genes. 

3.3 Hub Genes Selection 

The overlapping targets were visualized by generating a Venn diagram to identify the hub 

genes. The Venn diagram was constructed for 218 DEGs and 64 curcumin targets which 
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showed 3 common genes- Monoamine oxidase A (MAOA), Arachidonate 5-lipoxygenase 

(ALOX5) and Epidermal growth factor receptor erbB1 (EGFR). 

 

Figure 2: 2D structures of MAOA, ALOX5 and EGFR docked with curcumin are displayed 

in image A, C and E and their 3D structures are shown in image B, D and F 

3.4 Molecular Docking  

Hub Gene Docking Score 

MAOA -6.48 

ALOX5 -5.21567 

EGFR -5.9335 

Table 1: Docking scores for hub genes with curcumin 

Figure 2 consist of the 2D and 3D protein-ligand docking images of hub genes and curcumin 

and table 1 displays the docking score for each hub genes. The 2D image was obtained from 

protein-ligand interactions from glide module and the 3D structure was visualized using 

PyMOL. The highest docking score of MAOA implies to its stronger interaction and binding 

affinity towards curcumin compared to EGFR and ALOX5. 
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Figure 3: Kaplan-Meier survival plots of A) MAOA, B) EGFR and C) ALOX5 

3.5 Survival Analysis 

Kaplan-Meier survival analysis was performed to assess the prognostic potential of the hub 

genes. The associations between patient overall survival and the gene expressions are 

summarised in the generated plots. The overall survival analysis for each gene was performed 

in a default setting. High expression of MAOA showed significant survival benefit with the 

hazard ration (HR) of 0.76 while EGFR (HR= 1.85) with a high expression is a strong risk 

factor and ALOX5 (HR= 1.19) has failed to demonstrate significant survival association.  

4. DISCUSSION 

Through bioinformatics, the targets for CRC were investigated to assess their relations with 

curcumin. In this study, 217 DEGs were identified using GEO2R analysis of which 126 genes 

were upregulated, and 91 genes were downregulated. The hub genes were found by 

constructing a Venn diagram for the DEGs and curcumin target genes which are MAOA, 

ALOX5 and EGFR. The interaction and binding affinity of the hub genes with curcumin was 

examined by molecular docking.  

The docking results confirms a strong binding affinity between curcumin and MAOA followed 

by EGFR while the docking score for curcumin with ALOX5 was observed to be relatively 

weak. MAOA promotes cancer by producing reactive oxygen species that stabilizes HIF-1α 

[18]. Recent studies have shown that the inhibition of MAOA has induced apoptosis and caused 

metastatic and angiogenic suppression in CRC therapy [19–21].  
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EGFR was observed to be overexpressed in about 25% to 82% of CRC and its inhibition was 

noted to stop the proliferation and survival of cancer cells [22]. EGFR inhibition using effective 

inhibitors have evidenced to induce apoptosis, suppressing tumor cells and hindering 

angiogenesis and metastasis in breast, pancreatic, oral and head and neck cancers [23,24].  

The significant association of patient prognosis and the identified hub genes in CRC was 

evaluated using Kaplan-Meier survival analysis. This analysis clearly demonstrated that 

MAOA had favourable patient outcomes due to its high expression. Elevated EGFR expression 

was noticed which denotes poor survival and ALOX5 lacked the prognostic value. Some 

genetic experiment proposes some gene variants of ALOX5 may lower CRC risk yet higher 

expression of ALOX5 predicts worse prognosis [25,26]. 

In many studies, the expression of MAOA was unaffected or minimally decreased in CRC 

tissues compared to normal colon tissues, and MAOB (Monoanime Oxidase B) had higher 

prognostics value compared to MAOA [27,28]. The inhibition of MAOA in prostate cancer 

has exhibited to decrease the tumor growth [29]. Researchers found that the prognostic value 

of EGFR relies on the location of the tumor and its higher expression is associated to aggressive 

tumors [30,31]. Targeting MAOA and EGFR through curcumin has enhanced apoptosis, 

reduced epithelial-mesenchymal transition and invasion, and tumor growth [32]. 

5. CONCLUSION  

The integrated computational approach analyzed the interaction with curcumin and the 

prognostic values of the CRC molecular targets. The molecular docking study explored the 

robust binding affinity of MAOA with curcumin followed by EGRF. Survival analysis 

evaluated MAOA as a potential prognostic marker and EGFR being associated with poorer 

prognosis. ALOX5 had the least binding affinity to curcumin and had no prognostic 

significance diminishing its therapeutic relevance. Therefore, with an in-silico groundwork this 

study positions MAOA as a promising target for CRC therapy. Further in vitro and in vivo 

studies are essential to understand their interactions and mechanisms in biological models. 
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