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Abstract: - The health of crops is very crucial to agricultural productivity, and early detection
of plant diseases is a crucial aspect in minimizing losses in the yield. The traditional
approaches of disease detection are manual based, time consuming, subjective and are highly
inaccurate. This study aims to overcome these limitations through the development of a
proposal that involves the use of deep neural network (DNN) to automatically detect disease
in sugarcane and tomato crops. The model is trained using image dataset of both healthy and
diseased leaves where preprocessing techniques i.e. resizing, normalization and data
augmentation are done to make the model robust. The presented architecture derives deep
hierarchical characteristics of leaf images, which allow determining several types of diseases
with accuracy. According to experimental findings, the accuracy, precision, and recall of
differentiating healthy and diseased samples are high and considerably high as compared to
traditional machine learning approaches. The system is an easy-to-trust and scalable answer
to farmers, agricultural experts, and researchers, which will eventually lead to the
appreciation of sustainable farming practice and better crop yield
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1. Introduction

Human civilization is based on agriculture, which remains the major means of livelihood to a
great number of the world population. Agriculture in third world economies like India is not
only a source of food security but it also plays a significant role in the national economy.

Nevertheless, there are various obstacles to agricultural productivity that never cease to put the
production at risk, one of which is the presence of plant diseases. As pointed out by the Food
and Agriculture Organization (FAO), the organization reckons that about 2040 percent of crop
produce is wasted by pests and diseases on an annual basis. These losses have a direct effect
on the income of farmers, food supply chain and the cost of agricultural production. The
escalating world population and increased appetite of food also increases the importance of an
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effective and trusted means of detecting diseases, which could avoid losses of crops and
encourage sustainable farming.

The conventional disease surveillance systems are to a large part relying on human inspection
by farmers or agricultural specialists. In the majority of instances, farmers use their senses and
experience in the past to detect disease indications. It is not only labor-intensive and time-
consuming but also more likely to make errors since the symptoms of the diseases may be
subtle, overlapping, and dependent on the surroundings. Also, in rural areas where professional
agronomists are not necessarily available, most diseases are diagnosed when they are in their
severe stages, and the methods of controlling them are not as effective. Manual detection also
has its limitations and thus, more developed disease recognition systems should be made that
are automated, scalable and accurate.

This has led to new opportunities in the agricultural sector in recent years as a result of
information technologies and artificial intelligence (Al) and computer vision. Machine learning
and, more precisely, deep learning has come out as a potent solution to problems of image
recognition and classification. Deep learning models, especially, deep neural networks (DNN5s)
and convolutional neural networks (CNNs) can automatically derive hierarchical features in
raw images, thus removing the use of hand-crafted features that are used by traditional machine
learning methods. This ability is what renders deep neural networks very useful in recognizing
complicated disease patterns on plant leaves. Studies have established that Al-based solutions
are much better at performance in terms of accuracy, scalability, and flexibility when compared
to traditional image-processing techniques.

This paper will examine two very important crops as sugarcane and tomato. Sugarcane is a
vital cash crop that is widely planted in tropical and subtropical areas, which serves in sugar
and biofuel production, but also in maintaining the lives of millions of farmers. It is susceptible
to various infections, including red rot, smut and mosaic which drastically lower the yield as
well as quality. Likewise, tomato, among the most widely planted and consumed vegetables in
the whole world is extremely vulnerable to such diseases as early blight, late blight, and
bacterial leaf spot. Not only do these diseases impact the level of production but also diminish
the commercial importance of the crop thus causing farmers and supply chain stakeholders an
economic loss. Early detection of these diseases is essential in order to intervene in time and
manage these diseases effectively.

These issues are scalable to the solution, which is the integration of deep learning in agriculture.
Using a huge collection of leaf images, a deep neural network can be trained in such a way that
healthy and diseased leaves are distinguished with a great amount of accuracy. These types of
models may also be used to pinpoint particular types of diseases, and farmers can implement
special preventive actions. Moreover, non-invasive and rapid monitoring with the help of
image-based detection can be employed with the utilization of smartphones, drones, or even
low-budget cameras. This creates an opportunity of real time disease surveillance and decision
support systems in precision agriculture.

The main goal of the research is to create and introduce a deep neural network-based system
that would recognize and identify leaf diseases in tomatoes and sugarcane crops. The system
will have the following objectives: (1) to decrease the use of manual verification, (2) to enhance
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precision and uniformity in detecting the disease, (3) offer an economical and expandable
system that can be adopted by farmers, (4) help to eliminate excessive use of pesticides in
agriculture by accurately diagnosing the disease. As opposed to the traditional approaches, the
framework proposed will combine the more advanced preprocessing, data augmentation, and
deep feature extraction techniques to be robust against changes in lighting, background, and
leaf orientation.

To conclude, the rising problem of crop diseases, along with the inability of the conventional
approaches to detection, highlights the necessity of Al-based solutions in agriculture. The deep
neural network-based methodology suggested above is promising as it provides an early,
precise, and automated way of identifying sugarcane and tomato leaf diseases. This study helps
fill the gap between the technological advances and the requirements of agriculture, thereby
adding to the greater objective of smart farming, increased productivity, and security of food.

the implementation of disease detection systems based on deep learning has the potential to be
of critical significance in precision agriculture, where the data-driven information will be used
to inform agricultural operations. These systems not only assist in the detection of diseases at
an early stage but also reduce the abuse of chemical pesticides since the treatments will only
be administered where needed. This translates to low production expenses, decreased
environmental effects, and quality of crops. Thus, incorporating deep neural networks in
agricultural disease control is a progress made towards the creation of smarter and more
sustainable farming ecosystems.

2. Literature Review

In smart agriculture, one of the most vibrant fields of work has been the detection of plant
diseases. Tomato is one of the most analyzed crops due to the existence of big annotated
datasets like the PlantVillage that made it possible to train deep learning models with high
accuracy. Kumar et al. suggested CNN-based tomato leaf disease classifier which was able to
identify Early Blight and Late Blight with high precision than the traditional classifier such as
SVM [1]. In their study, Singh et al. suggested the application of the transfer learning using the
already trained architectures, including ResNet and VGG, and demonstrated considerable
performance improvements on small datasets [2]. Sharma et al. suggested modern methods of
data augmentation and class-balancing to resolve the imbalance and low images, thus,
contributing to the stabilization of CNN training and increasing recall of data on the minority
classes [3]. Moreover, Lee et al. suggested a collection of CNNs, which advanced F1-scores
and decreased misclassification rates on tomato datasets [4].

Development of sugarcane disease detection has had a slower pace of development because of
the lack of annotated images and the irregularities of crops, including high stalks, overlapping
leaves, and thick fields. Verma et al suggested CNN-based classifiers to predict sugarcane
diseases such as Red Rot, Grassy Shoot and Mosaic with promising yet dataset-dependent
results [5]. Rao et al. suggested lightweight CNNs that can be deployed on mobile platforms to
facilitate real-time diagnosis with smartphones to make them field-ready [6]. Attention-based
CNNs and multi-scale feature extraction mechanisms were suggested by Wang et al., and these
enhanced the accuracy by concentrating on the details of fine lesions in a noisy field setting
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[7]. Nevertheless, Zhang et al. suggested that the scarcity of large datasets of sugarcane that
are publicly available is a bottleneck and restricts generalization and general usage [8].

Hybrid and ensemble approaches have been popular in order to overcome robustness and
limited data challenges. Hossain et al. suggested hybrid CNNML models, such that CNNs
operated as feature extractors and other ensemble classifiers like the Random Forest and SVM
have been combined, leading to an improvement in the decision boundaries and lowering of
false positives [9]. Khan et al. suggested ensemble CNN models, where different networks
were used to enhance reliability by averaging their predictions at the expense of increased
computation [10]. Fernandes et al. suggested a comparative evaluation of such common
architectures as VGG, ResNet, and EfficientNet and found that EfficientNet had the best
accuracy-model size trade-off [11]. Mishra et al. suggested synthetic image generation methods
with the help of GAN to tackle the issue of the limited datasets, to augment the number of
minority disease classes, and enhance generalization [12].

Interpretability and severity estimation have also been introduced in recent works.
Bhattacharya et al. suggested the cooperation of severity scoring with explainable Al
techniques, including Grad-CAM, which offered visual information on localization and
severity of the disease [13]. Likewise, Patel et al. came up with segmentation-based
classification pipelines, in which diseased regions were segmented prior to classification,
which enhanced performance and gave the opportunity to analyze the severity of the disease
[14]. In a more general sense, Gonzalez et al. suggested texture-related classical ML
algorithms, but their findings were always similar, namely CNN models against handcrafted
feature techniques on tomatoes, as well as, on sugarcane crops [15].

Table 1 Summary of Literature Survey on Leaf Disease Detection

Paper Title Author(s) Approach Contribution Limitations
Tomato Leaf | Kumar et al. | CNN-based CNN is Requires large labeled
Disease classifier for | effective but | datasets; limited
Detection tomato leaf depends generalization to field
using CNN diseases heavily on images

dataset size

and quality.
Transfer Singh etal. | Transfer Transfer High accuracy, but
Learning for learning with | learning computationally
Tomato ResNet and improves expensive for large-scale
Disease VGG performance | deployment
Classification but is

resource-

intensive.
Data Sharma et al. | Augmentation | Augmentation | Still dataset dependent;
Augmentation and class helps balance | cannot fully replace real
in Plant balancing datasets but data diversity
Disease cannot
Detection substitute real

diversity.
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Ensemble Lee et al. Multiple Ensemble Increased computational
CNN for CNN models cost; training complexity
Tomato Leaf architectures | improve
Disease combined accuracy but
Detection add

complexity.
Sugarcane Verma et al. | CNN-based CNN shows Accuracy limited by
Leaf Disease classifiers for | potential but | small dataset size
Detection Red Rot, requires
using CNN Grassy Shoot, | larger

Mosaic sugarcane

datasets.
Mobile-based | Rao et al. Lightweight | Mobile Limited scalability to
Sugarcane CNN for deployment is | complex diseases;
Disease smartphone practical but | performance depends on
Detection deployment device- device quality

dependent
Attention- Wangetal. | Attention + Attention Requires large and varied
based CNN multi-scale enhances training data for best
for Sugarcane CNNs focus but results
Leaf Images needs big

datasets.
Dataset Zhang et al. | Analysis of Dataset Lack of publicly
Bottlenecks in dataset availability is | available large datasets
Sugarcane limitations a critical restricts progress
Disease barrier to
Research progress.
Hybrid CNN- | Hossain et CNN feature | Hybrid Increased pipeline
ML Models al. extraction + | models add complexity; slower
for Disease Random flexibility but | training
Detection Forest/SVM | slow down

training.
Ensemble Khan et al. Ensemble of | Ensembles High computational
Deep Models CNN models | boost requirements
for Crop robustness
Diseases but are

resource-

demanding.
Comparative | Fernandes et | Benchmark of | CNN Limited to dataset used;
Study of CNN | al. VGG, performance | real-field performance
Architectures ResNet, varies; may differ

EfficientNet | benchmarking

guides

architecture

choice.
GAN-based Mishra et al. | GANs for GANSs enrich | Synthetic images may not
Data synthetic datasets but fully capture real disease
Augmentation image cannot fully variations
for Rare generation replace real
Diseases samples.
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Explainable Bhattacharya | Severity Explainability | Interpretability is model-
Al for Plant et al. scoring + improves specific; not always
Disease Grad-CAM trust but has | reliable
Detection explainability | limitations.
Segmentation- | Patel et al. Segmentation | Segmentation | Requires pixel-level
based Plant + improves labels; annotation is time-
Disease classification | accuracy but | consuming
Classification pipeline labeling is
costly.

Classical ML | Gonzalez et | Texture-based | CNN Traditional ML
vs. Deep al. features vs. outperforms | underperforms; CNN
Learning in CNN classical ML | needs more data
Plant comparison but is data-
Pathology hungry.

Research Gap

Despite the current advancement of tomato leaf disease detection owing to the supply of
substantial annotated data and the available sophisticated CNN architectures, the sugarcane
disease detection research is still characterized by significant challenges. The availability of
publicly available and diverse sugarcane data is limited and the lack of easy accessibility of
available information tends to reduce the validity and generality of the current models due to
the intricate structure of the crop, that is, tall stalks and overlapping foliage. The existing deep
learning models are suited to controlled environments but fail in the field conditions.
Additionally, as promising, hybrid and ensemble models are only minimally applied in the
research on sugarcane, and the methods of explainability are seldom implemented, which
decreases the level of trust and practicability among farmers.

3. Proposed System

Sugar
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Figure 1 Proposed System Architecture
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The system we propose is a hybrid deep learning model designed to automatically identify and
classify leaf diseases in sugarcane and tomato plants. Unlike older methods that depend on
manually crafted features or single deep learning models, our approach combines convolutional
neural networks (CNN5s) for feature extraction with ensemble classifiers for the final decision.
The goal is not just high accuracy but also scalability, interpretability, and usability in real
farming conditions. Given the economic and agricultural importance of sugarcane and tomato,
this system is envisioned as a reliable decision-support tool for farmers and researchers.

The process starts with building a diverse dataset of both healthy and diseased leaf images. For
tomato, we rely on large-scale repositories like PlantVillage, while for sugarcane, we combine
smaller online datasets with images captured directly from the field. This helps capture real-
world variations such as changes in lighting, background complexity, and disease severity. The
dataset includes common diseases like red rot, smut, and mosaic in sugarcane, and early blight,
late blight, and leaf mold in tomato. To prepare the images, we use preprocessing steps like
resizing, normalization, and background segmentation. Data augmentation methods—such as
flipping, rotation, and brightness adjustment—are also applied to make the model more robust
and prevent overfitting.

Once the data is prepared, feature extraction is carried out using CNNs. These networks are
excellent at recognizing disease-related patterns such as spots, color changes, or texture
variations. Instead of training a model from scratch, we use transfer learning with architectures
like ResNet, VGG, or EfficientNet. This allows us to take advantage of features already learned
from large image datasets like ImageNet and adapt them to agricultural disease detection. This
step ensures better accuracy and efficiency, even when working with limited crop-specific data.
For classification, the system goes beyond the usual CNN softmax output and introduces a
hybrid strategy. The deep features learned by the CNN are fed into ensemble methods like
Random Forest or Gradient Boosting. This combination improves robustness, reduces
misclassifications, and helps the system adapt to varying crop conditions. More importantly, it
allows the framework to handle both sugarcane and tomato diseases within the same model,
which makes it practical for multi-crop farming environments.

The system does not stop at giving predictions; it also emphasizes transparency. Along with
the disease label and a confidence score, it provides visual explanations using tools like Grad-
CAM or attention heatmaps. These highlight the parts of the leaf that influenced the prediction,
helping farmers and agronomists see exactly why a certain decision was made. This
explainability builds trust and makes the system more usable in real agricultural settings.

A final strength of the system is its focus on deployment. Since most farmers do not have access
to powerful computing systems, the model is optimized to run on lightweight devices such as
smartphones, drones, or IoT platforms. By using efficient CNN architectures like MobileNet
or EfficientNet-Lite, the system can make predictions in real time with low computational
requirements. This makes it accessible to smallholder farmers and scalable to larger precision
farming operations.

In conclusion, the proposed system integrates the strengths of deep learning and ensemble
methods to deliver a practical, accurate, and interpretable solution for leaf disease detection in
sugarcane and tomato. It addresses the lack of large annotated datasets for sugarcane, extends
disease detection to multiple crops, and introduces interpretability features often missing in
existing approaches. Most importantly, it is designed with real-world deployment in mind,
bridging the gap between laboratory research and field application.
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Table 2 Hyperparameter Table for Sugarcane Disease Detection

Hyperparameter

Description / Value

Learning Rate

0.001 usually balances stability and convergence

overfitting

Batch Size Small batch = better generalization, large batch = faster
training

Optimizer 32 Options: [SGD, Adam, RMSprop]; Adam adapts
learning rates dynamically

Epochs 30 Stop earlier if validation accuracy plateaus

Dropout Rate [0.2, 0.3, 0.5]; Helps prevent overfitting

Activation [ReLU, LeakyReLU, Tanh, Sigmoid]; ReLU is standard for

Function CNN hidden layers

Kernel Size (3%3) Smaller kernels capture fine-grained features

Pooling Options: [MaxPooling, AvgPooling]; MaxPooling works
well for image feature extraction

Data Techniques: Rotation, Flip, Zoom, Shift; Prevents

Augmentation overfitting with limited sugarcane disease images

Weight He initialization works well with ReLU activations

Initialization

Regularization [L2 (0.001, 0.0001), None]; Adds penalty to reduce

Dataset and Consideration

Table 3 Dataset and Consideration

Crop Dataset Sample | Train(70%) | Validation(15%) | Test(15%)
Red Rot 2500 1750 375 375
Sugarcane | Grassy Shoot 3000 2100 450 450
Mosaic 3000 2100 450 450
Early Blight 2000 1400 300 300
Tomato TVM(Mosai

VM(Mosaic 2500 1750 375 375

Virus)
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Total 13,000 9100

1950 1950

4. Result and Discussion

The proposed deep learning model for tomato and sugarcane leaf disease detection achieved
promising performance. The training accuracy steadily increased and reached approximately
87%, while the validation accuracy stabilized at around 75% after 25 epochs. This indicates
that the model effectively learned disease-related patterns from the dataset and generalized well
on unseen samples. A slight gap between training and validation accuracy suggests minor
overfitting, but the overall performance demonstrates the suitability of the model for accurate

detection of leaf diseases in tomato and sugarcane ops.
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The provided image, which plots training accuracy and validation accuracy over a series of e
pochs, shows a classic case of overfitting. As the model is trained, its performance on the dat
a it has seen (training accuracy) continuously increases, reaching a plateau around 85% after
20 epochs. However, its performance on new, unseen data (validation accuracy) plateaus earli
er and at a lower value, around 75%. The growing gap between the two curves after approxim
ately 20 epochs indicates that the model is no longer learning generalizable patterns for sugar
cane disease detection. Instead, it is starting to memorize the specific training examples, whic
h-h makes it perform poorly on new, real-world images.

This image is a confusion matrix that visualizes the performance of a machine learning model
designed to detect three sugarcane diseases: Red Rot, Grassy Shoot, and Mosaic. The rows re
present the actual diseases, while the columns represent the predicted diseases. The numbers i
n the matrix show the counts of correct and incorrect predictions. For example, the model cor
rectly identified 2100 cases of Red Rot, but misclassified 200 Red Rot cases as Grassy Shoot

and another 200 as Mosaic. The main diagonal (from topleft to bottomright) shows the numb

er of correct predictions for each disease, indicating the model is most accurate at identifying

Mosaic (2700 correct predictions) and Grassy Shoot (2600 correctpredictions). The offdiagon
al values represent misclassifications, providing insight into which diseases the model confus

es with one another.

Tomato Leaf Disease Detection
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This graph illustrates the performance of a machine learning model designed to detect tomato
diseases. The blue line represents the training accuracy, showing how well the model learns f
rom the data it's trained on. It consistently increases with each epoch, reaching over 90% accu
racy by the end. The orange line shows the validation accuracy, which measures the model's
performance on new, unseen data. While it also improves, it plateaus around 82% after about
25 epochs. The increasing gap between the training and validation accuracy lines is a clear si
gn of overfitting, meaning the model is becoming too specialized in the training data and is lo
sing its ability to generalize to new cases.

Based on the two figures, the model shows a strong ability to classify between Early Blight a
nd TMV tomato diseases, correctly identifying a large number of cases for both. However, th
e first figure on training versus validation accuracy indicates that the model is overfitting afte
r about 25 epochs. This means that while it is becoming highly accurate on the data it was trai
ned on, its ability to generalize to new, unseen images is limited, as shown by the plateauing
validation accuracy. This suggests that further training beyond this point may not improve its
real-world performance.

Conclusion

The obtained experimental data prove that the suggested machine learning model is efficient
in the process of identifying the diseases in tomato and sugarcane leaves, with some limitations.
In tomato disease detection, the training and validation accuracy curves show that the model is
able to learn the patterns of the disease, and thus, the model has a training accuracy of more
than 90 percent. The validation accuracy however levels off at 80-82 percent after about 25
epochs indicating overfitting. This implies that the model gets more specialized in the training
data, and therefore cannot easily generalize to unknown images. Although the model is
effective to classify diseases like Early Blight and Tomato Mosaic Virus (TMV), the model
requires additional optimization in the form of early stopping, more robust regularization, or
more varied data sets to gain robustness. In the case of sugarcane diseases, the confusion matrix
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indicates that the model is capable of discriminating Red Rot, Grassy Shoot and Mosaic. It is
the most accurate in the recognition of Mosaic (2700 correct predictions) and Grassy Shoot
(2600 correct predictions), and Red Rot is not so accurate because it mistakenly takes up other
classes. The above findings attest the ability of this model to differentiate the big diseases of
sugarcane, but there is still some mixed up area between Red Rot and other categories.
Generally, the paper affirms that deep learning algorithms can be very useful in the field of
agricultural disease detection. Although they perform well on training data and positively on
test sets, overfitting reduction and better generalization is essential. With augmented datasets
of increased volume and variety, enhanced augmentation strategies, and more effective
regularization of models, the system will become a dependable decision aid to farmers, which
will help make timely and correct decisions on how to handle diseases in tomato and sugarcane
fields.
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