# ASSESSMENT OF WOUND HEALING AND ANTIMICROBIAL POTENTIAL OF CLERODENDRUM PANICULATUM LEAF EXTRACT AND ITS FORMULATION

AKSHAYA S\*1, DR.G.N.PRAMODINI<sup>2</sup>

\*1Mpharm student, Department of Pharmacognosy, Nehru College of Pharmacy, Pampady, Thrissur, Kerala-680588

<sup>2</sup>Professor and HOD, Department of Pharmacognosy, Nehru College of Pharmacy, Pampady, Thrissur, Kerala-680588

#### **ABSTRACT**

In this work, the ethanolic extract of Clerodendrum paniculatum leaves was evaluated for its antibacterial, antifungal, and wound-healing properties in order to create a topical herbal ointment. The crude extract was obtained by Soxhlet extraction with ethanol and subsequently submitted to antibacterial investigations, wound healing (scratch assay), and in vitro cytotoxicity (MTT assay). Its safety was confirmed by the cytotoxicity experiment on L929 fibroblast cells, which showed dose-dependent action with a maximal viability of 76.93% at 100 µg/mL. Significant wound closure was demonstrated by the scratch assay results, with treated groups showing full healing in 72 hours as compared with controls. While antifungal activity against Candida albicans was relatively stronger, with zones of inhibition of 1 cm and 1.2 cm at 200 µg and 400 μg, respectively, antimicrobial testing revealed poor antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The physicochemical properties of the herbal ointment made with the extract were assessed, and it showed good washability, low LOD (0.67 g), spreadability (83.41 g·cm/s),

acceptable color, odor, pH (5.9), and non-irritating nature. These results support *C. paniculatum's* traditional use and demonstrate its many applications in herbal formulations for dermatological uses by indicating that it has excellent wound healing and antifungal capabilities.

**Keywords:** Clerodendrum paniculatum, wound healing, antimicrobial activity, antifungal activity, herbal ointment

#### 1. <u>INTRODUCTION</u>

The term "pharmacognosy," which describes studies of drugs made from natural products, has been used for about 200 years as part of the scientific discipline of pharmacy[1]. Traditional medicines, particularly herbal medicine, continue to be the main source of healthcare in many countries and cultures throughout [2]. Often referred to as the "Red Pagoda plant" (Family *Verbenacea*), *Clerodendrum paniculatum* Linn is a semi-woody shrub that grows naturally in shaded spots all across India and can grow up to 1-2 meters tall. It has traditionally been used to treat inflammation, ulcers, rheumatism, neuralgia, and wound healing in China, Japan, and India [3]. The herb is considered to have ethnomedical importance and is used to treat wounds, typhoid, snakebite, jaundice, giddiness, malaria, anemia, and hemorrhoids [4].

Injury is one of the primary causes of physical limits. A towel condition known as a crack is one that has been changed by physical, chemical, microbiological, or immunological attacks; it is typically associated with a loss of function [5]. The loss or interruption of the cellular, anatomical, or functional continuity of define living tissue is wound [6]. one way to Plants have long been used by humans to treat common infectious diseases, and some of these age-old treatments are still in use today to treat a range of ailments [7]. Plants are used medicinally in many countries and are the source of promising and effective [8]. treatments

Among all forms of medicine, herbal medicine is the oldest [9]. In addition to standard dose forms, herbal drugs can also be found in ointment formulations. Medication may or may not be present in an ointment [10]. Herbal ointments made from plants have many advantages, such as being readily available, having fewer side effects, and being a powerful treatment [11].

#### 2. METHDOLOGY

#### 2.1 Plant collection, authentication and drying:

Fresh leaves of *Clerodendrum paniculatum* Linn were collected from Vengasseri in Palakkad, Kerala. Dr. Ranjusha A.P., the head of the botany department of NSS College in Ottapalam, Palakkad, Kerala, confirmed and taxonomically identified the item. The plant material was processed into a powder using a mixer grinder and stored in an airtight container after being dried in the shade for 18 to 20 days.

#### 2.2 Extraction

The leaves of *C. paniculatum* Linn. were subjected to hot continuous extraction using a Soxhlet apparatus with ethanol as the solvent. Thirty grams of powdered marc were placed in the extractor, while 400 mL of solvent was taken in a round-bottom flask. The extraction was carried out for 12 hours, after which the solvent was carefully evaporated to obtain the extract. The concentrated extract was then weighed and preserved in a desiccator for subsequent analysis [12].

## 2.3 Invitro cytotoxicity study

L929 mouse fibroblast cells were cultured in DMEM supplemented with 10% FBS, L-glutamine, sodium bicarbonate, and antibiotics at 37°C in a humidified 5% CO<sub>2</sub> incubator. Cells (5 ×  $10^3$ /well) were seeded into 96-well plates and allowed to attach for 24 h. The test sample (1 mg/mL in 0.1% DMSO, sterile-filtered) was diluted with medium to obtain concentrations of 100, 50, 25, 12.5, and 6.25 µg/mL, which were added to the cells in triplicates, while untreated and vehicle controls were maintained. After 48 h of incubation, cell morphology was

examined under an inverted microscope, and cytotoxicity was evaluated by the MTT assay. Briefly,  $30 \,\mu\text{L}$  of MTT solution (5 mg/mL in PBS) was added to each well and incubated for 4 h at 37°C. The supernatant was then removed, and 100  $\mu\text{L}$  of DMSO was added to dissolve the formazan crystals. Absorbance was recorded at 540 nm using a microplate reader, and the percentage of cell viability was calculated as: (Mean OD of sample/Mean OD of control)  $\times$  100.[13,14].

#### 2.4 Invitro wound healing activity

L929 mouse fibroblast cells were cultured in DMEM supplemented with 10% FBS, L-glutamine, sodium bicarbonate, and antibiotics at 37°C in a humidified 5% CO<sub>2</sub> incubator. For the assay, exponentially growing cells were seeded into 12-well plates at a density of 2 × 10<sup>5</sup> cells/well and allowed to form a confluent monolayer. A sterile 1 mL pipette tip was used to create straight-line scratches across the monolayer, and the detached cells were removed by rinsing with PBS. The wells were then treated with the test sample (25 μg/mL, prepared in 0.1% DMSO and sterile-filtered) and incubated for 0, 24, 48, and 72 h. Wound closure was observed under an inverted microscope (4× magnification, Olympus CKX41), and images were captured at the intersection of the scratch and premarked line. The percentage of wound healing was quantified by measuring the wound area using MRI-Image analysis software [15].

# 2.5 Invitro antimicrobial activity

## 2.5.1 Antibacterial activity-agar disc diffusion method

The antibacterial activity of the ethanol extract of *Clerodendrum paniculatum* leaves was evaluated by the disc diffusion method using *Pseudomonas aeruginosa* and *Staphylococcus aureus* as test organisms. Muller Hinton agar plates were prepared and uniformly lawned with bacterial cultures using sterile swabs, followed by a 15 min drying period. Sterile discs were impregnated with the plant extract, while 30 µg gentamycin discs served as the positive control and

ethanol (99%) as the negative control. The plates were incubated at 37°C for 18–24 h, after which the zones of inhibition were measured using calipers. All experiments were performed in triplicates to ensure reliability [16].

#### 2.5.2 Antifungal activity-agar disc diffusion method

The antifungal activity of the ethanol extract of *Clerodendrum paniculatum* leaves was evaluated against *Candida albicans* using the disc diffusion method. Nutrient agar plates were lawned with the fungal inoculum and left at room temperature for 30 min (pre-diffusion time). Sterile discs impregnated with the plant extract at concentrations of 200 and 400 µg were placed on the plates, with fluconazole discs as the positive control and ethanol as the negative control. After allowing the discs to diffuse into the agar for 1 h at room temperature, the plates were incubated in the dark for 48 h, and the resulting zones of inhibition (ZOI) were measured and recorded [17].

#### 2.6 Preparation and evaluation of wound healing ointment

#### 2.6.1 Preparation of ointment

| SL NO | INGREDIENTS                       | QUANTITY(10g) |
|-------|-----------------------------------|---------------|
| 1     | Ethanolic extract of Clerodendrum | 0.5g          |
|       | paniculatum leaves                |               |
| 2     | Emulsifying wax                   | 0.5g          |
| 3     | White soft paraffin               | 4.8g          |
| 4     | Liquid paraffin                   | 3.9g          |

Table no; 1 formulation of ointment

**Procedure:** Each component was weighed and heated with a heating mantle to 70°C in a beaker. After five minutes of gently mixing the materials, the temperature was maintained at 70°C. The ethanolic extract of the leaves of *Clerodendrum paniculatum* was then added, mixed well, and placed into the closed container [18].

#### 2.6.2 Evaluation of ointment

- ✓ Colour and odour: Examine the ointment visually to determine its color and scent.
- ✓ **pH:** The ointment's pH was measured with a digital pH meter. After dissolving 1 g of ointment in 50 ml of purified water, the pH was measured[19].
- ✓ **Spreadability:** To assess spreadability, a particular weight is applied for a predetermined amount of time to compress the sample between two slides to a uniform thickness. The length of time required to separate two slides is referred to as spreadability. When two slides are separated in less time, spreadability improves.

The formula used to determine spreadability was [20]

$$S = MxL/T$$

- ✓ Evaluation of Loss on Drying (LOD): The formulation was put in a petri dish in a water bath and dried at 105°C to determine LOD.
- ✓ **Washability:** The combination was applied to the skin of two volunteers, and the ease of washing with water was then evaluated.
- ✓ **Test for Non-Irritation:** A prepared herbal ointment was applied to the skin of two individuals, and the outcomes were tracked[21].

#### 3. RESULTS AND DISCUSSION

Invitro cytotoxicity study

| Sample              | OD      | OD     | OD     | Average | Percentage |
|---------------------|---------|--------|--------|---------|------------|
| Concentration       | value I | value  | value  | OD      | Viability  |
| (μg/mL)             |         | II     | III    |         |            |
| Control             | 0.9331  | 0.9248 | 0.913  | 0.9236  | 100.00     |
| Sample Code: Sample |         |        |        |         |            |
| 6.25                | 0.9045  | 0.9187 | 0.9057 | 0.9096  | 98.49      |
| 12.5                | 0.8878  | 0.8748 | 0.8716 | 0.8781  | 95.07      |
| 25                  | 0.8453  | 0.8365 | 0.8378 | 0.8399  | 90.93      |
| 50                  | 0.8002  | 0.7956 | 0.7935 | 0.7964  | 86.23      |
| 100                 | 0.7073  | 0.7118 | 0.7125 | 0.7105  | 76.93      |

Table no:2 Cytotoxic assay

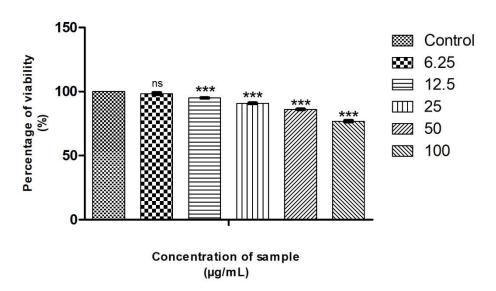



Figure no:1 Percentage of viability

A graphic representation along the Y axis that shows the sample's cytotoxic effect using the MTT assay percentage viability, with the concentration of the sample changing along the X axis. Three duplicates of each experiment were conducted, and the findings are shown as Mean+/- SE. The data was analyzed using the Dunnet's test and one-way ANOVA. P < 0.001 in comparison to the control group, and ns < non-significant.

.

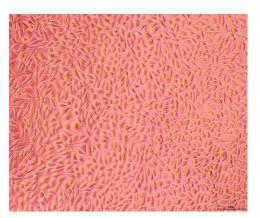



Figure no:2 sample 6.25µg/ml



Figure no:3 sample 12.5µg/ml

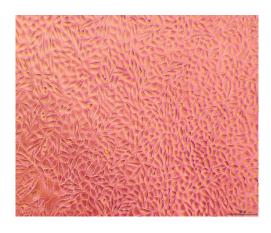



Figure no:4 sample 25µg/ml

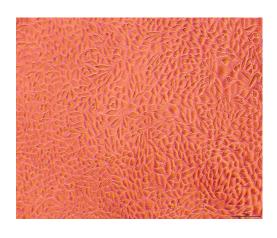



Figure no:5 sample 50µg/ml



Figure no:6 sample 100µg/ml



Figure no:7 Control

# **Invitro wound healing activity**

| Time Interval (hrs) | Scratch area (px) |
|---------------------|-------------------|
| CONTROL 0 HR        | 1428459           |
| SAMPLE 0 HR         | 1426702           |
| CONTROL 24 HR       | 1034415           |
| SAMPLE 24 HR        | 828330            |
| CONTROL 48 HR       | 577161            |
| SAMPLE 48 HR        | 283455            |
| CONTROL 72 HR       | 310032            |
| SAMPLR 72 HR        | 0                 |

Table no:3 Scratch assay

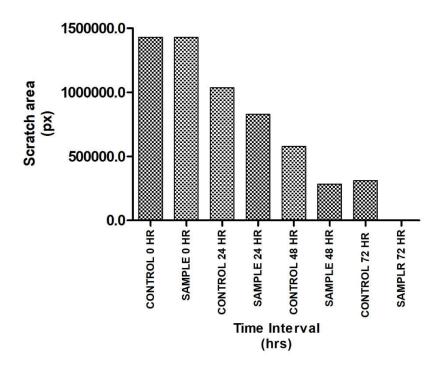



Figure no:8 Scratch wound healing area



Figure no:9 Control at 0<sup>th</sup> hour



Figure no:10 sample at 0<sup>th</sup> hour

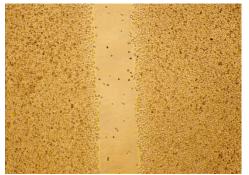



Figure no:11 Control at 24<sup>th</sup> hour



Figure no:12 sample at 24<sup>th</sup> hour



Figure no:13 Control at 48th hour



Figure no:14 sample at 48<sup>th</sup> hour



Figure no:15 Control at 72<sup>nd</sup> hour



Figure no:16 sample at 72<sup>nd</sup> hour

The scratch wound healing test revealed that the leaf extract from *Clerodendrum* paniculatum linn promoted a faster wound closure than the control. The treated cell's wound area shrank in just a day. After 48 hours, the treated cells had repaired considerably more. The wound on the treated cell was completely closed after 72 hours, whereas there was still a gap in the control. Consequently, the sample may hasten the wound-healing capacity of the cells.

#### **Invitro antimicrobial activity**

#### **Antibacterial activity**

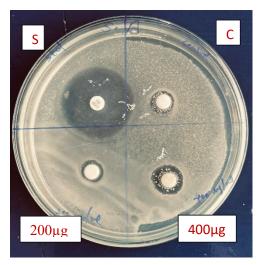



Figure no:17 Antibacterial activity of

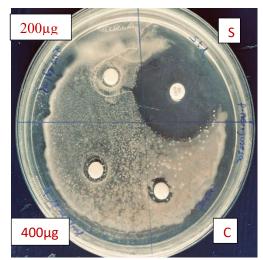



Figure no:18 Antibacterial activity

S. aureus in extract

of P. aeruginosa in extract

| Sl no | Organisms     | ZOI of  | ZOI of   | ZOI of  | ZOI of  |
|-------|---------------|---------|----------|---------|---------|
|       |               | control | standard | extract | extract |
|       |               | (cm)    | (cm)     | (200µg) | (400µg) |
| 1     | S. aureus     | 0.9     | 3.1      | 0.2     | 0.7     |
| 2     | P. aeruginosa | 0.8     | 3.6      | 0.1     | 0.2     |

Table no:4 Anti- bacterial activity of C.paniculatum leaf

The antibacterial activity of the ethanolic extract of *Clerodendrum paniculatum* leaves was not as strong as that of the conventional medication. The extract demonstrated a mild dose-dependent activity against *Staphylococcus aureus*, producing a zone of inhibition (ZOI) of 0.2 cm at 200 μg and 0.7 cm at 400 μg. This was significantly less than the standard (3.1 cm). Comparing the extract to the standard (3.6 cm), *Pseudomonas aeruginosa* showed negligible inhibition, measuring 0.1 cm at 200 μg and 0.2 cm at 400 μg. The lack of solvent action was

confirmed by the control, which displayed very little activity in either organism. In summary, the findings indicate that although the extract has some modest antibacterial properties, its efficacy is significantly lower than that of the standard.

#### **Antifungal Activity**

| Sl no | Organism    | ZOI of  | ZOI of   | ZOI of  | ZOI of  |
|-------|-------------|---------|----------|---------|---------|
|       |             | control | standard | extract | extract |
|       |             | (cm)    | (cm)     | (200µg) | (400μg) |
| 1     | C. albicans | 0       | 1.5      | 1       | 1.2     |

Table no:5 Antifungal activity of C. paniculatum Leaf

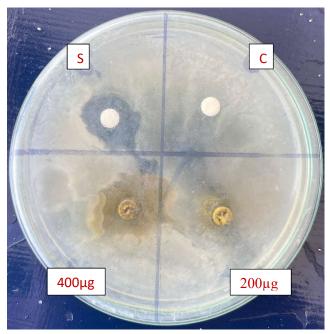



Figure no:19 Anti-fungal activity of *C.albicans* in extract

Clerodendrum paniculatum leaf ethanolic extract showed strong antifungal efficacy against Candida albicans. The extract showed a small dose-dependent increase in activity, producing a zone of inhibition (ZOI) of 1 cm at 200  $\mu$ g and 1.2 cm at 400  $\mu$ g. The extract had significant antifungal potential in comparison to the control, which showed no inhibition, even though the conventional

medication displayed a larger inhibition zone of 1.5 cm. Although being less effective than the standard, these results imply that the extract includes bioactive chemicals with antifungal activities.

## Preparation and evaluation of wound healing ointment

# **Preparation of ointment**



Figure no:20 10g wound healing Ointment

# **Evaluation of wound healing ointment**

| Sl no | Parameters    | Observations |
|-------|---------------|--------------|
| 1     | Colour        | Light green  |
| 2     | Odour         | Not strong   |
| 3     | рН            | 5.9          |
| 5     | Spreadability | 83.41gcm/s   |
| 6     | LOD           | 0.67g        |
| 7     | Washability   | Good         |

| 8 | Non irritation | Non irritant |
|---|----------------|--------------|
|   |                |              |

Table no:6 Evaluation parameters of wound healing ointment

The physicochemical properties of the herbal ointment made from the ethanolic extract of *Clerodendrum paniculatum* leaves were assessed, and the findings suggest that it is suitable for topical use. The ointment was visually acceptable due to its faint odor and light green color. The pH of 5.9 is safe and has a low chance of irritating skin because it is within the skin-compatible range. With a spreadability of 83.41 g·cm/s, it was found to be easy to apply over the skin's surface. Low moisture content and good stability were confirmed by the loss on drying (LOD), which was 0.67 g. The ointment's promise for safe dermatological usage was further supported by its good washability and non-irritating properties. All things considered, these findings imply that the formulation has favorable properties for efficient topical administration.

#### 4. CONCLUSION

Clerodendrum paniculatum leaves have long been used in herbal medicine, and its ethanolic extract showed encouraging antifungal and wound-healing properties. The extract demonstrated antifungal potential against *Candida albicans* and significantly accelerated wound closure in vitro, considering its comparatively low antibacterial efficiency. Favorable physicochemical properties, such as good spreadability, stability, washability, and non-irritating nature, demonstrated the produced herbal ointment's appropriateness for topical use. The study's findings demonstrate the possibility of *C. paniculatum* leaf extract as a natural, safe option for dermatological formulations.

#### **5. ABBREVIATIONS**

C.paniculatum: Clerodendrum paniculatum

ZOI: Zone of inhibition

S. aureus: staphylococcus aureus

P. aeruginosa: pseudomonas aeruginosa

C.albicans: Candida albicans

#### **6. ACKNOWLEDGEMENT**

I would like to thank Nehru college of Pharmacy for the support and lab facilities.

#### 7. REFERENCES

- 1. Kinghorn AD. Pharmacognosy in the 21st century. Journal of pharmacy and pharmacology. 2001 Feb;53(2):135-48.
- 2. Leisegang K. Herbal pharmacognosy: An introduction. In Herbal medicine in andrology 2021 Jan 1 (pp. 17-26). Academic Press.
- 3. Joseph J, Bindhu AR, Aleykutty NA. In vitro and in vivo Antiinflammatory Activity of *Clerodendrum paniculatum* Linn. Leaves. Indian journal of pharmaceutical sciences. 2013 May;75(3):376.
- 4. Kekuda PT, Sudharshan SJ. Ethnobotanical uses, phytochemistry and biological activities of *Clerodendrum paniculatum* L.(Lamiaceae): A comprehensive review. Journal of Drug Delivery & Therapeutics. 2018 Sep 2;8.
- 5. Kumarasamyraja D, Jeganathan NS, Manavalan R. A review on medicinal plants with potential wound healing activity. Int J Pharm Pharm Sci.2012;2:105-1.
- 6. Kokane DD, More RY, Kale MB, Nehete MN, Mehendale PC, Gadgoli CH.Evaluation of wound healing activity of root of Mimosa pudica. Journal of ethnopharmacology. 2009 Jul 15;124(2):311-5.
- 7. Rios JL, Recio MC. Medicinal plants and antimicrobial activity. Journal of ethnopharmacology. 2005 Aug 22;100(1-2):80-4.
- 8. Vashist H, Jindal A. Antimicrobial activities of medicinal plants—Review. Int J Res Pharm Biomed Sci. 2012;3(1):222-30.
- 9. Kekuda PT, Sudharshan SJ. Ethnobotanical uses, phytochemistry and biological activities of *Clerodendrum paniculatum* L.(Lamiaceae): A

- comprehensive review. Journal of Drug Delivery & Therapeutics. 2018 Sep 2;8.
- 10. Gaikwad VV, Chavan RS, Shinde JV, Mane RU, Chandankhede AV, Patil GA. A review on herbal ointment. World Journal of Pharmaceutical Research. 2024 Apr 30;13(12):406-15.
- 11. Chhetri HP, Yogol NS, Sherchan J, KC A, Mansoor S, Thapa P. Formulation and evaluation of antimicrobial herbal ointment. Kathmandu University Journal of Science, Engineering and Technology. 2010;6(1):102-7.
- 12. Joseph J, Joseph L, George M, AR B. Phytochemical screening and antioxidant activity of various extracts of *Clerodendrum paniculatum* linn. World J Pharm Res. 2018 May 10;7(13):555-68.
- 13.Jerard C, Michael BP, Chenicheri S, Vijayakumar N, Ramachandran R. Rosmarinic Acid-Rich Fraction from Menthaarvensis Synchronizes Bcl/Bax Expression and Induces Go/G1 Arrest in Hepatocarcinoma Cells. ProcNatlAcadSci, India, Sect B Biol Sci. 2020 Sep;90(3):515–22.
- 14.Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods. 1983 Dec;65(1–2):55–63.
- 15.Ramachandran R, Saraswathy M. Postconditioning with metformin attenuates apoptotic events in cardiomyoblasts associated with ischemic reperfusion injury. Cardiovascular Therapeutics. 2017 Dec;35(6):e12279
- 16. Zaidan MR, Noor Rain A, Badrul AR, Adlin A, Norazah A, Zakiah I. In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method. Trop biomed. 2005 Dec 1;22(2):165-70.
- 17. Chahal JK, Renu Sarin RS. Evaluation of antimicrobial activity of crude flavonoids in medicinally important arid zone plant-*Clerodendrum phlomidis* Linn.
- 18. Sekar M, Rashid NA. Formulation, evaluation and antibacterial properties of herbal ointment containing methanolic extract of *Clinacanthus nutans* leaves.

- International Journal of Pharmaceutical and Clinical Research. 2016 Aug;8(8):1170-4.
- 19. Abhishek Y, Krishanu S. Formulation and evaluation of herbal ointment using *Emblica officinalis* extract. World Journal of Advanced Research and Reviews. 2021;9(02):032-7.
- 20.Beyna AT, Mengesha AK, Yefter ET, Kahaliw W. Evaluation of wound healing and anti-inflammatory activity of hydro-alcoholic extract and solvent fractions of the leaves of *Clerodendrum myricoides* (Lamiaceae) in mice. Plos one. 2024 Jul 10;19(7):e0306766.
- 21. Vakte SR, Gangurde SA, Mahajan YV, Lohagaonkar NB, Ahirrao LG, Dhamane GM, Beldar SA, Meherban ND, Dolas RT, Vaishnav IS, Vakte MS. Formulation And Evaluation Of Herbal Ointment Containing Extracts Of *Curcuma Longa & Piper Nigrum*. International Journal of Food and Nutritional Sciences. 2022;2022:11.