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Marangoni Convection in a Fluid Layer over Anisotropic Porous Media: 

An Exact Solution Approach 

Abstract 

Exact analytical solutions are derived for velocity fields and Marangoni number in a fluid layer 

overlying an anisotropic porous medium, incorporating the effects of internal heat generation 

and couple stresses. Parametric evaluation of the closed-form results shows that enhancement-

type parameters (a,b,𝜉) amplify velocities and Marangoni numbers, the resistance-like 

parameter 𝜆 suppresses them, and 𝑄 has only a weak influence; the Marangoni number exhibits 

an approximately exponential decay with fluid-layer thickness. In addition, a reduction in 

couple-stress is found to increase fluid velocity, while internal heat generation strengthens 

thermocapillary-driven motion in the fluid layer though its impact within the porous layer 

depends on the relative layer depths. The exact solutions provide clear physical insight and 

quantitative benchmarks useful for the design of thermal-management, coating, and 

microgravity applications where surface-tension-driven transport is important. 

 

Keywords: Marangoni convection, Anisotropic porous medium, Exact solutions, 

Thermocapillary flow, Fluid–porous layers. 

 

1. Introduction 

Thermocapillary-driven convection, commonly known as Marangoni convection, arises from 

gradients of surface tension at fluid–gas interfaces and plays a crucial role in microscale heat 

and mass transfer. The classical foundation of this phenomenon was laid by Scriven and 

Sternling [9], who demonstrated the destabilizing influence of surface-tension gradients on 

fluid layers, and by Koschmieder and Biggerstaff [10], who analysed the onset of surface-

tension-driven Bénard convection. Since then, a rich body of literature has examined 

Marangoni convection under varied physical effects, including porous substrates, magnetic 

fields, ferrofluids, nanofluids, and hybrid thermal–fluid systems. 

The interaction between a pure fluid layer and an underlying porous medium has drawn 

particular attention due to its relevance in coating, crystal growth, and microgravity 

applications. Kozak et al. [1] investigated Marangoni convection in a liquid layer overlying a 

porous layer with surface evaporation, while Saghir et al. [2] reported transient convection 

patterns in coupled fluid–porous configurations. Building upon these foundations, Abdullah 

and Rashed [3] analysed the instability of Bénard–Marangoni convection in porous layers 

under oblique magnetic fields, highlighting the sensitivity of convection to external field 

orientation. Complementary studies on ferro convection in porous domains [4,6] have further 

underscored the interplay between magnetization, anisotropy, and permeability in controlling 

flow regimes. 
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Recent advancements have extended these classical and porous-medium models to nanofluids 

and hybrid nanofluid systems. Ahmed and Raizah [7] examined natural convection in variable-

porosity media with nanofluid suspensions, while Kumar et al. [5] numerically investigated 

Marangoni-driven hybrid nanofluid flows over permeable stretching surfaces, revealing 

enhanced heat transfer and tuneable flow responses. Likewise, Shivakumara et al. [6] explored 

Brinkman–Bénard–Marangoni convection in magnetized ferrofluids, bridging the gap between 

microstructural physics and macroscopic transport. At a more fundamental level, analytical 

approaches have also established theoretical limits on heat transfer in high-Prandtl number 

regimes [8], reinforcing the mathematical underpinnings of Marangoni convection models. 

Despite these advances, a unified understanding of coupled fluid–porous systems under 

Marangoni convection remains incomplete, particularly in configurations where layer 

thickness, permeability, couple-stress effects, and internal heating interact in nontrivial ways. 

Addressing these gaps is essential for optimizing thermal management, coating processes, and 

space-based fluid systems where buoyancy forces are suppressed. Motivated by these 

challenges, the present study develops analytical solutions for velocity and Marangoni 

convection in a fluid–porous layer system, systematically classifying the roles of enhancement, 

dampening, and weak parameters. By directly linking velocity distributions with surface-

tension-driven convection behaviour, this work provides new insights into the stability and 

efficiency of coupled transport processes. 

2.  Mathematical Formulation     

  The physical configuration consists of a horizontal anisotropic porous layer of thickness  md

Underlying a fluid layer of thickness d with no lateral boundaries as shown in Fig.1. The lower 

boundary of anisotropic porous layer is taken to be rigid, while the upper free boundary of the 

fluid layer at which the surface tension acts is assumed to be non-deformable since for most 

liquid the capillary number is assumed to be very small, commonly ranging from .1010 26 −− to

The surface tension   is assumed to vary linearly with temperature in the form  

                               (1) 

Where  
0     is the unperturbed  value and   T−  is the rate of change of surface tension with 

temperature .The  temperature of the lower and upper boundaries is taken to be uniform and 

equal to 
lT and 

uT with 
uT < 

lT .The Cartesian coordinates (x, y, z)is chosen such that the origin 

is at the interface between  the fluid layer and the of anisotropic porous layer and the z-axis is 

vertically upward.                                      

Governing Equation: 

Fluid Layer: 

0= V
                                

(2) 

( ) )42

0 VVpVV
t

V 


−+−=







+




                        (3) 

( )00 TTT −−= 
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( ) fqTTV
t

T
+=+



 2


              

    

                         (4)

 

   Porous Layer: 

                                        

                                         (5) 

mmm
m VKp
t

V
.10 −−−=










                                            (6) 

( ) ( ) mmmmmmmm
m qTTV
t

T
A +=+




                         (7) 

Here   V


is the velocity vector, p is the pressure, T is the temperature, and fq  is the heat 

source in the fluid layer, while  
mV    ,

mp , 
mT ,and 

mq  are corresponding quantities in the 

Porous Layer.   is the thermal diffusivity ,   is the fluid viscosity,   is the porosity of 

porous medium, A  is the ratio of heat capacities, 
0  is the fluid density, K  is the 

permeability tensor and  
m is the thermal diffusivity tensor. The basic steady state is 

assumed to be quiescent and temperature distributions are found to be        

( ) dzz
q

z
dq

d

TT
TzT

ffu
b +
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
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


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



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

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−= mmm

mv

m
m

mv

mm

m

l
mmb zdz

q
z

dq

d

TT
TzT


                                        

(9)

            

   

'VV


=  ,  ( ) 'TzTT b += ,  ( ) 'pzpp b +=                                                              (10) 

   

1

mm VV


= ,   ( ) mmbm TzTT '+= . ( ) '

mmbm pzpp +=                                                            (11) 

Where the primed quantities are the perturbation assumed to be small. The Eqs. (10) and (11) 

are substituted in Eqs. (2)- (7) and linearized in the usual manner.  T be pressure term is 

eliminated from Eqs. (3) and (6) by taking curl twice on these two equations and only the 

vertical component is retained. The variables are then non dimensionalized using 
d

d
d




,,

2

 and 

uo TT −  as the units of length, time, velocity, and temperature in the fluid layer and 

0= mm V
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m

mv

mv

m
m

d

d
d




,,

2

 and ol TT −  as the units of length, time, velocity, and temperature in the porous 

layer. The non-dimensional disturbance equations are given by 

0
Pr

2422
2

=







+−




w

t



                                  (12)

 
( )  zNswT

t
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

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
−




                               (13)
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2
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







++




m

m
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Da
                                                 (14)

 

( ) zNswT
zt

A mmm
m

mh 211
2

2
2 ++−=












−−




                          (15) 

Where  
m

v

d

K
Da

2
=  is the Darcy number,  

( ) ( )0

2

0

2

2
&

2 TT

dq
Ns

TT

dq
Ns

lmv

mm
m

uv

f

f
−

=
−

=


 are the 

dimensionless heat source strength in the fluid and porous layers respectively 




=Pr  is the Prandtl number,  

mv

m



=Pr is the porous medium the Prandtl number 

v

h

K

K
=  is the mechanical anisotropy parameter and 

mv

mh




 =  is the thermal anisotropy 

parameter 

hK  , vK         is the permeability in horizontal direction and vertical direction respectively, 

mh , mv          is the thermal diffusivity in horizontal direction and vertical direction 

respectively of porous medium. 

The boundary conditions are: 

        10 ==



= zat

z

T
w                               (16) 

          12

2

2

==



zatTM

z

w
h                          (17) 

       10 −==



= m

m

m
m zat

z

T
w                           (18) 

Where,  
( )


 dTT
M uT −

= 0  is the Marangoni number 
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At the interface (i.e., z=0) the normal component of velocity, temperature. Heat flux and 

normal stress are continuous. Since there is no viscous stress term in the Darcy equation, 

continuity of shear stress across the interface cannot be used. Instead, using slip condition 

proposed by Beavers and Joseph [1967]. Accordingly, the following condition at the interface 

is used. 

m

T

ww



=                  (19) 

m
T TT



=                (20) 

m

m

Z

T

Z

T




=




              (21) 

m

m

T

h
z

w

Daz
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z 


−=
















+



 4

2

2
2

3            (22) 

m

m

T
z

w

Daz

w

Daz

w




−




=











 3

2

2

            (23) 

where 
mv

T



 =  is the ratio of thermal diffusivities    is the slip parameter and  

2

2

2

2
2

yx
h




+




=  is the horizontal Laplacian operator.  

( ) ( ) ( )  ( ) mylxizzWTw +=  exp,,                                         (24)          

                          

( ) ( ) ( )  ( ) ymxlizzWTw mmmm
~~

exp,, +=                     (25) 

( ) ( ) 022222 =−− WbDaD               (26) 

( ) ( ) zNsWaD f 21122 −−−=−              (27) 

( ) 022 =− mmm WaD                 (28) 

( ) ( ) zNsWaD mmmm 21122 ++−=−              (29) 
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Where D and mD are differentiation with respect to z and mz respectively, 
22 mla += and

22 ~~
mlam += are correspondingly overall horizontal wave number in the fluid and porous 

layers   and 
m

m

d

a

d

a
= as the wave numbers must be same in the fluid and porous layers. 

Hence 
ma

a
=  

The twelve boundary conditions become 

 ( ) 022 ==−= DWaDW      at z = 1                             (30) 

 022 =+MaWD                     (31) 

Those at the interface (z=0) are: 

 

Method of solution: Exact solution 

Solving equation (26) and (27), we get the general solution in the form 

( ) ( ) bzBbzAazzBBazzAAW sinhcoshsinhcosh 332121 +++++=
                         (32)

 

( ) ( )mzmamAmzmamAmW  sinh2cosh1 +=
                        (33)
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2
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446

sinh
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cosh
446
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cosh
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22222
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322222

2

332
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2

2

2
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23

22

2

1

2232232

2

2

12

2

21
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           (34) 

Where
 2131,31 , mm AandABBAA −− are constants determined using the boundary conditions to 

obtain W and Wm  

𝑊 = 𝐴2[𝑅 cosh 𝑎𝑧 + 𝑧 cosh 𝑎𝑧 +𝐺 sinh𝑎𝑧 + 𝐸𝑧 sinh 𝑎𝑧 + 𝜆 cosh 𝑏𝑧 + 𝑄 sinh 𝑏𝑧]        (35) 

𝑊𝑚 = 𝐴2[𝑁 cosh(√𝜉𝑎𝑚𝑧𝑚) + 𝑁 sinh(√𝜉𝑎𝑚𝑧𝑚) coth(√𝜉𝑎𝑚)]                                       (36) 
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Using the coupled boundary condition (31), an expression for Marangoni number is finally 

obtained in the form  

( )      









+++

+++++++−
=

bKbKaKaK

QbbbEaGaaaaEaRaa

a
M

sinhcoshsinhcosh

sinhcosh2sinh2cosh1

74737271

222222

2


        (37)
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
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Figures 

 

Figure 1: Physical configuration of the problem 

 

 

Figure 2: Velocity profiles for varying values of "a" 

222 ab +=
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Figure 3: Velocity profiles for varying values of "b" 

 

 

Figure 4: Velocity profiles for varying values of " 𝜆 " 

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 9

PAGE NO : 10



 

Figure 5: Velocity profiles for varying values of " Q " 

 

 

Figure 6: Porous layer velocity profiles for varying values o “ 𝜉” 
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Figure 7: Variation of Marangoni number for varying values of ” E” 

 

Figure 8: Variation of Marangoni number for varying values of “𝜆" 
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Figure 9: Variation of Marangoni number for varying values of “a” 

 

 

3. Results and Discussion 

The analytical solutions obtained provide valuable insights into velocity distributions in both 

the fluid and porous layers, as well as the variations of the Marangoni number under different 

parametric conditions. The results are presented in Figures 2–9. 

3.1 Velocity Profiles 

Figure 2 illustrates the influence of parameter 𝑎 on velocity 𝑊(𝑍) in the fluid layer. Velocity 

increases significantly with higher 𝑎, reaching nearly fourfold enhancement compared to the 

baseline case. This nonlinear growth suggests that 𝑎 functions as a strong driving parameter, 

likely associated with couple-stress effects, where a reduction in couple-stress resistance 

enhances fluid acceleration due to increased particle spin. 

Figure 3 demonstrates the effect of parameter 𝑏. Although it also enhances velocity, its 

contribution is more moderate, with peak velocities roughly one-third of those observed for 

parameter 𝑎. The closer spacing of velocity curves indicates that 𝑎 acts as a secondary scaling 

factor, possibly of geometric origin. 

Figure 4 presents the variation of velocity with parameter 𝜆. Unlike 𝑎 and 𝑏, increasing 𝜆 

consistently suppresses velocity profiles, with reductions nearly by half between the smallest 
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and largest tested values. This confirms that 𝜆 represents a resistance parameter, linked to 

viscous drag or permeability opposition, which stabilizes the flow. 

Figure 5 depicts the influence of 𝑄, showing only marginal changes in velocity. The velocity 

curves remain closely clustered across the entire range, indicating that 𝑄 plays a weak role, 

possibly related to boundary heating conditions or secondary forcing. 

Figure 6 shows the porous layer velocity 𝑊𝑚(𝑍𝑚) as a function of 𝜉. Here, velocity grows 

strongly with increasing 𝜉, from around 8 units at 𝜉 = 0.5 to nearly 30 units at 𝜉 = 3.0. This 

behaviour confirms that 𝜉 governs permeability effects, promoting stronger transport in the 

porous medium and acting analogously to the enhancing role of parameters 𝑎 and 𝑏 in the fluid 

layer. 

3.2 Marangoni Number Variations 

Figure 7 presents the dependence of Marangoni number 𝑀 on fluid layer thickness 𝑑 for 

various 𝐸. All profiles show exponential decay, consistent with theoretical predictions that 

surface-tension-driven convection dominates thin layers but weakens rapidly as thickness 

increases. Less negative values of 𝐸 sustain higher 𝑀, reaching nearly 70 when 𝑑 ≤ 0.1. 

Figure 8 shows the influence of 𝜆 on the Marangoni number. Increasing 𝜆 suppresses M across 

all thicknesses, confirming its stabilizing effect. At small thicknesses, 𝑀 ≈ 50 for 𝜆 = 0.1, but 

drops significantly at higher 𝜆, mirroring the dampening effect observed in velocity profiles. 

Figure 9 highlights the effect of parameter 𝑎 on Marangoni convection. Consistent with its role 

in enhancing velocity, larger 𝑎 values yield markedly higher Marangoni numbers, particularly 

for thin layers where convection is strongest. Maximum 𝑀 values approach 80 at 𝑎 = 2.0, 

reinforcing the strong coupling between momentum enhancement and surface-tension effects. 

3.3 Interpretation and Implications 

Overall, the parameters can be classified into three categories: (i) enhancement factors (𝑎, 𝑏, 𝜉) 

that increase both velocity and Marangoni number, (ii) a dampening factor (𝜆) that consistently 

suppresses flow and convection, and (iii) a weak factor (𝑄) with negligible influence. The 

exponential decay of Marangoni number with layer thickness reaffirms that thin fluid layers 

are most effective for sustaining thermocapillary convection. 

These findings hold practical significance. Thin layers (𝑑 < 0.3) ensure strong Marangoni 

effects, while parameters such as 𝑎 and 𝜉 may be tuned to enhance system performance. 

Conversely, 𝜆 must be carefully controlled to prevent excessive suppression of convective 

transport. 

4. Conclusion 

In this study, exact analytical solutions were obtained for the onset of Marangoni convection 

in a fluid layer overlying an anisotropic porous medium, subject to the combined influences of 

internal heat generation and couple stresses. The closed-form results enabled a systematic 

exploration of parameter effects on velocity distributions and the critical Marangoni number. 
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The analysis reveals that enhancement-related parameters (a,b, and 𝜉) increase both velocity 

and the Marangoni number, while the resistance parameter (𝜆) has a stabilizing influence by 

suppressing flow strength. The couple-stress parameter is shown to diminish velocity, 

indicating that weaker couple stresses promote stronger thermocapillary motion. Internal heat 

generation consistently amplifies convection in the fluid layer, though its effect within the 

porous medium depends sensitively on the relative thickness of the layers. Furthermore, the 

Marangoni number decreases almost exponentially with increasing fluid-layer thickness, 

underscoring the role of geometry in modulating surface-tension-driven instabilities. 

Overall, the derived exact solutions provide valuable benchmarks for studying thermocapillary 

transport in fluid–porous systems. The findings offer physical insight into the interplay between 

heat generation, couple stresses, and anisotropic porous structures, with potential relevance to 

thermal management technologies, microgravity fluid mechanics, and advanced coating 

processes. 
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