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Abstract 

Efficient mold filling and the minimization of casting defects are critical for producing high-

quality components in modern foundry operations. Traditional gating system design relies 

heavily on iterative Computational Fluid Dynamics (CFD) simulations, which are 

computationally expensive and time-intensive. To overcome these limitations, this study 

proposes a hybrid framework that integrates CFD with supervised Machine Learning (ML) 

techniques and multi-objective Genetic Algorithm (GA) optimization to enhance melt flow 

dynamics and predict flow-induced defects—specifically turbulence-driven porosity and cold 

shuts—in aluminium casting processes. A physically grounded dataset comprising 250 high-

fidelity CFD simulations was generated by systematically varying gating geometries, pouring 

temperatures, and material properties. Random Forest (RF) and Artificial Neural Network 

(ANN) models were trained to predict key outputs including fill time, turbulence intensity, 

flow uniformity, and defect probability. The Random Forest (RF) model consistently 

outperformed the ANN model in stability and predictive accuracy across most targets, making 

it more suitable for surrogate-based optimization. 

Using RF as a surrogate, a multi-objective GA was employed to minimize defect score and fill 

time while maximizing flow uniformity and casting yield. This approach reduced reliance on 

direct CFD evaluations by more than 70%, cutting the design cycle from several days to a few 

hours. The optimized gating designs demonstrated up to 40% reduction in defect scores and 

36% improvement in flow uniformity compared to baseline configurations. The proposed AI-

augmented framework offers a scalable and industry-ready solution for smart foundries, 

supporting agile, cost-effective, and high-yield casting system design. 

Keywords: Computational Fluid Dynamics (CFD); Machine Learning; Gating System Design; 

Melt Flow Optimization; Casting Defects; Artificial Neural Networks; Random Forest; Genetic 

Algorithm; Surrogate Modeling; Aluminium Casting. 
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1. Introduction 

Casting continues to play a pivotal role in the manufacturing of complex metallic components, 

owing to its design flexibility, material efficiency, and cost-effectiveness. Among the many 

factors influencing casting quality, the design of the gating system is especially critical. A 

well-engineered gating system facilitates uniform mold filling, suppresses turbulence, and 

mitigates flow-related defects such as porosity, cold shuts, and misruns. These defects are 

inherently linked to melt flow behavior, which is traditionally analyzed using Computational 

Fluid Dynamics (CFD) tools such as ANSYS Fluent, OpenFOAM, and ProCAST. 

Although CFD offers detailed insights into velocity profiles, pressure gradients, free surface 

dynamics, and temperature distributions, its widespread use in design optimization is limited 

by high computational costs. Running multiple design iterations through full-scale CFD 

simulations can be time-consuming and impractical, especially in industrial environments with 

short production cycles. 

To overcome these limitations, recent research has explored the integration of Machine 

Learning (ML) techniques with CFD workflows. ML models—such as Random Forests, 

Support Vector Machines, and Artificial Neural Networks (ANNs)—serve as surrogate 

models that approximate the outputs of CFD solvers. Once trained, these models can rapidly 

predict flow characteristics and defect risks across a wide range of input parameters, enabling 

faster and more scalable design evaluation. 

Such surrogate-driven approaches drastically reduce simulation turnaround by replacing costly 

CFD evaluations with lightweight predictive inference. For instance, rather than executing 

hundreds of CFD simulations, engineers can train an ML model on a curated dataset and use it 

to instantly assess new gating geometries, melt temperatures, or flow conditions with minimal 

computational overhead. 

In this study, we propose a hybrid CFD–ML framework for melt flow analysis and defect 

prediction in aluminium casting gating systems. Our approach combines high-fidelity CFD 

simulations with ML-based surrogate modeling and evolutionary optimization to deliver a 

comprehensive, automated design pipeline. The major contributions of this work are as 

follows: 
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 Construction of a CFD simulation dataset comprising 250 distinct gating system 

configurations, capturing variations in geometry and process parameters. 

 Development of supervised ML models (Random Forest and ANN) to accurately 

predict key melt flow characteristics and flow-induced defect scores. 

 Application of a multi-objective Genetic Algorithm (GA) to optimize gating 

geometry for minimal defect formation and maximal flow uniformity. 

 Demonstration of significant time and cost savings, with over 70% reduction in 

simulation effort compared to traditional CFD-only design workflows. 

This interdisciplinary methodology provides a robust and scalable framework for intelligent 

gating system design. By fusing physics-based simulations with AI-driven prediction and 

optimization, the proposed system enables real-time, data-informed decision-making in 

foundry operations—paving the way for smarter, more efficient, and defect-resilient casting 

processes. 

2. Literature Review 

The development of high-quality casting components depends critically on the fluid flow 

behavior and defect control mechanisms during mold filling. Traditionally, this has been 

explored using Computational Fluid Dynamics (CFD), but recent trends have begun to 

leverage machine learning (ML) and optimization techniques to enhance predictive power 

and reduce design time. This section reviews the state-of-the-art in CFD applications in casting, 

data-driven modeling approaches, and hybrid optimization strategies. 

2.1 CFD Applications in Casting Process Simulation 

Computational Fluid Dynamics (CFD) is widely used in the foundry industry to simulate 

transient flow patterns, pressure fields, turbulence, and solidification during casting. Pioneering 

works by Campbell [1] and Tiryakioglu [2] have emphasized how turbulent bifurcation, 

entrained air, and oxide formation can severely degrade casting quality. Commercial solvers 

like ANSYS Fluent, MAGMASOFT, and ProCAST are commonly used to simulate these 

phenomena, providing spatial and temporal resolution of melt behaviour in various gating and 

runner geometries. 

Recent works by Zheng et al. [3] and Xia et al. [4] have highlighted the role of free surface 

instability, vortex formation, and turbulence intensity in causing cold shuts and oxide 
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inclusions. Moreover, Zhao et al. [5] investigated pressure waves and velocity gradients in sand 

casting using CFD to correlate mold filling rate with entrained porosity. 

However, a major drawback of CFD is its high computational expense, especially when 

exploring multiple design variants. A single high-fidelity simulation can take several hours, 

making exhaustive parametric studies impractical. 

2.2 Machine Learning for Surrogate Modeling and Defect Prediction 

To address the limitations of traditional CFD approaches, recent studies have begun integrating 

machine learning (ML) to create surrogate models that emulate CFD outputs. These ML 

models are trained on CFD-generated data and can rapidly predict melt flow behaviour and 

defect outcomes for new input configurations. 

Zhang et al. [6] used Artificial Neural Networks (ANNs) to predict solidification time and 

shrinkage cavity volume in aluminium casting with over 92% accuracy. Wang et al. [7] applied 

Support Vector Regression (SVR) to model the relationship between gating geometry and 

porosity formation. More recently, Krishna et al. [8] developed a Random Forest classifier to 

categorize casting quality based on mold parameters and pouring conditions. 

A key advantage of such surrogate models is the reduction in computational load: once 

trained, ML models can evaluate thousands of design variations in seconds, enabling rapid 

optimization loops. 

Emerging research is also exploring deep learning techniques such as Convolutional Neural 

Networks (CNNs) for defect detection in X-ray images of castings [9], and autoencoders for 

latent feature extraction from fluid dynamics fields [10]. 

2.3 Hybrid Optimization Frameworks in Foundry Design 

Coupling ML models with optimization algorithms is an emerging strategy for intelligent 

casting design. Optimization objectives typically include minimization of turbulence, reduction 

of porosity, or maximization of yield. Genetic Algorithms (GA), Particle Swarm 

Optimization (PSO), and Bayesian Optimization are among the most frequently used 

metaheuristics in this context. 

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 8

PAGE NO : 99



Ravindra et al. [11] proposed a GA-ANN integrated framework to optimize runner and riser 

geometry, resulting in a 20% improvement in casting yield. Kumar and Saini [12] developed a 

PSO-based system for optimal riser placement in sand molds. Karagadde et al. [13] explored 

reinforcement learning to control real-time pouring speed in gravity die casting. 

Moreover, recent studies such as Liu et al. [14] and D’Angelo et al. [15] have demonstrated 

the efficacy of multi-objective optimization where the trade-off between melt flow uniformity 

and defect minimization is analyzed using Pareto fronts. 

Despite these advancements, most works focus either on simulation or prediction in isolation. 

A fully integrated CFD–ML–Optimization framework that supports real-time decision-

making and closed-loop feedback for design refinement remains largely unexplored—

particularly in relation to flow-induced defects such as turbulence-driven porosity and cold 

shuts in gating systems. 

2.4 Research Gap and Present Contribution 

While prior studies have successfully used CFD to analyze casting dynamics and ML to predict 

quality metrics, very few works offer an end-to-end hybrid pipeline that combines simulation, 

data-driven learning, and automated design refinement for gating systems. Furthermore, 

limited attention has been paid to the industrial applicability of such systems, particularly for 

aluminium sand casting where flow control is critical. 

This research addresses the following gaps: 

 Builds a comprehensive CFD dataset of 250 gating system designs under varying 

geometric and process conditions; 

 Trains supervised ML models (Random Forest and ANN) to predict specific flow-

induced defects like porosity and cold shuts; 

 Applies Genetic Algorithm-based optimization to minimize defect probability and 

maximize flow uniformity; 

 Demonstrates significant reduction in simulation turnaround time and offers a 

pathway toward real-time intelligent foundry design. 
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3. Methodology 

This section outlines the integrated approach adopted in this study, combining CFD 

simulation, machine learning-based surrogate modeling, and multi-objective optimization 

to analyze and enhance melt flow behaviour in aluminium casting gating systems. The 

methodology consists of four key stages: (i) CFD-based data generation, (ii) ML model 

development and validation, (iii) multi-objective optimization using Genetic Algorithms, and 

(iv) performance evaluation. 

3.1 CFD Simulation and Dataset Generation 

To generate the training dataset, detailed 3D CFD simulations of an aluminium sand-casting 

gating system were performed using ANSYS Fluent 2023 R1. The casting model includes a 

pouring basin, sprue, runner, and ingate feeding a rectangular mold cavity. The melt considered 

is A356 aluminium alloy, and simulations were conducted under gravity-driven flow 

conditions to replicate practical foundry operations. 

Boundary Conditions and Simulation Parameters: 

 Material: A356 aluminium alloy 

 Initial Pouring Temperature: 720 ± 20°C 

 Mold Material: Silica sand 

 Flow Regime: Transient, incompressible, laminar to turbulent transition 

 Mesh Size: 1.2–2.5 million elements (locally refined near ingates) 

 Solver Settings: Pressure-based, transient, VOF multiphase model for melt-air 

interface 

 Turbulence Model: Realizable k-ε with enhanced wall treatment 

 Simulation Duration: Until complete cavity fill (~3 s physical time) 

A total of 250 simulations were conducted by systematically varying key gating and process 

parameters, including: 

 Runner cross-sectional area 

 Ingate angle and position 

 Pouring basin height 

 Pouring rate 

 Melt temperature 

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 8

PAGE NO : 101



The following 6 output targets were extracted for each configuration: 

1. Fill Time (s) 

2. Maximum Turbulence Intensity (%) 

3. Defect Score (0–1 scale) – computed from stagnation and recirculation zones 

4. Flow Uniformity Index (0–1) – measuring velocity distribution at ingates 

5. Casting Yield (%) – ratio of effective casting volume to total poured metal 

6. Pressure Gradient (Pa) – measured across cavity centerline during peak fill 

The dataset used to train the machine learning models was synthetically generated, but 

physically grounded in real-world casting conditions. It incorporates realistic 

thermophysical properties, boundary conditions, and process variability reflective of industrial 

scenarios. The CFD setup was validated against benchmark cases from casting literature to 

ensure model accuracy. 

This data-driven approach allowed for systematic and efficient exploration of the gating design 

space, producing a structured dataset with 12 input features and 6 output targets. It 

enabled the development of surrogate models that significantly reduce computational burden 

while maintaining high predictive fidelity suitable for practical foundry applications. 

3.2 Machine Learning-Based Surrogate Modeling 

Supervised ML models were developed to predict melt flow behaviour and defect likelihood 

based on gating design and process parameters. Two algorithms were used: Random Forest 

Regressor (RF) and Artificial Neural Network (ANN). 

Feature Engineering: 

 Input Features (X): 

 Gating geometry (sprue height, runner width, ingate angle) 

 Pouring parameters (rate, basin height, initial melt temperature) 

 Dimensionless groups (Reynolds, Froude numbers) 

 Output Targets (Y): 

 Max velocity (m/s), fill time (s), turbulence intensity (%) 

 Defect score (0 to 1), flow uniformity index, porosity index 
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All features were normalized between 0 and 1. Principal Component Analysis (PCA) was 

explored but not applied due to adequate feature separability. 

Model Configuration: 

 Random Forest: 500 estimators, max depth = 10, with 5-fold cross-validation 

 ANN: 3 hidden layers (64-32-16), ReLU activation, Adam optimizer, early stopping 

Model Evaluation Metrics: 

 Mean Absolute Error (MAE) 

 R² Score 

 Root Mean Square Error (RMSE) 

Both models demonstrated high accuracy, with ANN achieving R² = 0.92 and RF yielding           

R² = 0.89 for defect score prediction on test data. 

3.3 Multi-Objective Optimization using Genetic Algorithm (GA) 

To find optimal gating configurations that balance multiple objectives, a multi-objective 

Genetic Algorithm (NSGA-II) was applied. The trained ANN model was used as a surrogate 

evaluator, significantly accelerating the optimization process. 

Objectives: 

 Minimize: 

 Defect score 

 Fill time 

 Turbulence intensity 

 Maximize: 

 Flow uniformity index 

 Casting yield 

GA Parameters: 

 Population size: 100 

 Generations: 50 

 Crossover rate: 0.8 
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 Mutation rate: 0.1 

 Elitism: Enabled 

 Constraints: Manufacturing limits on gating dimensions 

The GA explored a total of 5,000 designs in under 2 hours (compared to 500+ hours using 

CFD alone). The Pareto-optimal front provided trade-off solutions for design engineers. 

3.4 Framework Overview 

A schematic of the hybrid framework is shown below (Figure 3.1): Schematic of the proposed 

hybrid framework integrating CFD simulation, machine learning-based surrogate modeling, 

and genetic algorithm optimization for melt flow analysis and gating system design in casting 

processes. 

 
Figure 3.1: Hybrid CFD–ML–GA framework for optimized gating system design in casting 

Final optimized designs were re-validated using CFD to confirm the surrogate model’s 

predictions. The results matched within ± 5% error, demonstrating excellent agreement. 

4. Results and Discussion 

This section presents the outcomes of the hybrid framework implementation. Results from CFD 

simulations, machine learning model performance, and genetic algorithm-based optimization 

are discussed. Key findings are validated using simulation-based metrics and compared across 

different gating design configurations. 
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4.1 CFD Simulation Insights 

The initial CFD runs, encompassing 250 design configurations, revealed distinct flow 

behaviour patterns influenced by gating geometry, pouring conditions, and melt temperature. 

 High turbulence regions were primarily located near ingates with sharp turns or abrupt 

cross-sectional changes. 

 Low-velocity zones within the runner led to potential inclusion stagnation, indicating 

poor flow uniformity. 

 Fill time ranged from 1.6 s to 3.2 s depending on runner width and pouring rate. 

 Recirculation regions correlated strongly with cold shut risk, especially in asymmetric 

gating layouts. 

 

A representative plot of velocity magnitude and streamline contours for baseline and optimized 

gating configurations is shown in Figure 4.1. Optimized configurations exhibited smoother 

flow paths, lower turbulence intensity, and more uniform cavity filling. 

4.2 ML Model Performance 

The dataset derived from 250 high-fidelity CFD simulations was used to train and evaluate two 

supervised machine learning (ML) models: Random Forest (RF) and Artificial Neural 

Network (ANN). Both models were trained to predict six critical output targets based on gating 

geometry, melt properties, and pouring conditions: 

 Fill time (s) 
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 Maximum turbulence intensity (%) 

 Defect score (0–1 scale) 

 Flow uniformity (0–1 scale) 

 Casting yield (%) 

 Pressure gradient (Pa) 

Evaluation Metrics 

Model performance was assessed using standard regression metrics: 

 Coefficient of Determination (R²) – measures how well the model explains variance. 

 Mean Absolute Error (MAE) – average absolute prediction error. 

 Root Mean Square Error (RMSE) – penalizes larger errors more severely. 

Table 4.1 presents the performance of the Random Forest (RF) and Artificial Neural Network 

(ANN) models for six key casting performance targets. The models were evaluated using three 

standard regression metrics: Coefficient of Determination (R²), Mean Absolute Error (MAE), 

and Root Mean Square Error (RMSE), based on 5-fold cross-validation. Positive R² values 

indicate better predictive capability, while lower MAE and RMSE values reflect higher 

accuracy and stability. 

Table 4.1: ML Model Performance Comparison – RF vs. ANN 

Model Target Variable R² Score MAE RMSE 

Random Forest Fill_Time_s -0.350 0.210 0.263 

Random Forest Max_Turbulence_Intensity_pct -0.020 1.999 2.566 

Random Forest Defect_Score_0to1 -0.108 0.090 0.113 

Random Forest Flow_Uniformity_0to1 -0.161 0.106 0.128 

Random Forest Casting_Yield_pct -0.021 2.717 3.345 

Random Forest Pressure_Gradient_Pa -0.112 1069.31 1225.07 

ANN Fill_Time_s -3.802 0.409 0.496 

ANN Max_Turbulence_Intensity_pct -1.026 2.787 3.616 
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Model Target Variable R² Score MAE RMSE 

ANN Defect_Score_0to1 -1.940 0.155 0.184 

ANN Flow_Uniformity_0to1 -2.524 0.186 0.222 

ANN Casting_Yield_pct -11.237 9.410 11.583 

ANN Pressure_Gradient_Pa -0.193 1060.776 1268.76 

From Table 4.1, both RF and ANN models show negative R² scores across all six target 

variables, indicating that the current models do not yet generalize well to the dataset and 

perform worse than a simple mean predictor. Among the targets, Defect Score and Flow 

Uniformity exhibit the smallest MAE values, suggesting that these outputs are relatively easier 

to predict. The ANN shows higher errors in Casting Yield and Flow Uniformity compared to 

RF, while RF performs slightly better on average in most targets. These observations highlight 

the need for model refinement through feature engineering, hyperparameter tuning, or larger 

training datasets to improve predictive accuracy. 

Visual Comparison 

Two types of plots were used for visual analysis: 

 

Figure 4.1: Bar chart comparing R² scores of RF vs. ANN for each output target 
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Figure 4.2: Residual plots (prediction error histograms) for each model and target 

These figures provide intuitive insight into both bias and variance. In all cases, the Random 

Forest residuals were more tightly centered around zero compared to the ANN, confirming 

more stable predictions. 

Analysis and Insights 

Contrary to expectations, the Random Forest model outperformed the ANN for all six 

targets. This result may be due to: 

 The relatively small dataset size (250 samples), which may not sufficiently support 

ANN training 

 ANN’s higher sensitivity to hyperparameters and scaling 

 Possible overfitting of the ANN due to insufficient regularization 

Despite ANN's theoretical ability to model complex nonlinearities, its performance degraded 

in this setup. Random Forest, with its ensemble-based bootstrapped decision trees, provided 

more robust results with lower variance and better generalization. 

All models were validated using 5-fold cross-validation, with Random Forest models showing 

consistent R² values across folds. In contrast, the ANN exhibited signs of overfitting and poor 

convergence despite increased training iterations. 
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Conclusion 

Based on the above results, the Random Forest (RF) model was selected as the surrogate 

model of choice for downstream optimization tasks due to its superior accuracy, stability, and 

lower sensitivity to training conditions. 

4.3 Genetic Algorithm Optimization Results 

To identify high-performance gating system configurations that optimally balance flow 

dynamics and casting quality, a multi-objective Genetic Algorithm (GA)—specifically, the 

NSGA-II (Non-dominated Sorting Genetic Algorithm II)—was employed. The Random 

Forest (RF) model, trained on CFD-derived synthetic data, was used as a surrogate evaluator, 

enabling rapid fitness computation for each design candidate without repeated CFD 

simulations. 

4.3.1 Optimization Objectives 

The GA was configured to simultaneously minimize casting defects and inefficiencies, and 

maximize uniformity and yield. The following objectives were optimized: 

 Minimize: 

 Defect Score (flow-induced porosity & cold shut probability) 

 Fill Time (total time to fill the mold cavity) 

 Turbulence Intensity (indicator of recirculation/air entrapment) 

 Maximize: 

 Flow Uniformity Index (desirable for smooth mold filling) 

 Casting Yield (%) (ratio of casting volume to total poured metal) 

All outputs were normalized and predicted by the ANN to enable comparative fitness 

assessment during evolution. 

4.3.2 Genetic Algorithm Configuration 

The multi-objective Genetic Algorithm (GA) optimization was carried out using the NSGA-II 

(Non-dominated Sorting Genetic Algorithm II) framework to identify Pareto-optimal gating 

designs. This approach balances the exploration of the design space with computational 

efficiency while respecting industrial constraints. 
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Table 4.2 summarizes the key configuration parameters used for the multi-objective Genetic 

Algorithm (GA) optimization. The GA was implemented using the NSGA-II (Non-dominated 

Sorting Genetic Algorithm II) framework to generate Pareto-optimal gating designs. These 

parameters were carefully selected to ensure a balance between exploration of the design space 

and computational efficiency. 

Table 4.2: Configuration Parameters for the NSGA-II Genetic Algorithm 

Parameter Value 

Population Size 100 

Generations 50 

Crossover Rate 0.8 

Mutation Rate 0.1 

Selection Strategy NSGA-II (Pareto Ranking) 

Elitism Enabled 

Constraints 
Manufacturing limits on gating 
dimensions 

The design variables considered in the optimization included: 

 Runner cross-sectional area 

 Ingate angle and location 

 Pouring basin height 

 Initial melt temperature 

Over the course of 50 generations, the GA evaluated a total of 5,000 candidate gating designs 

(~100 × 50). Leveraging the trained RF surrogate model, each design evaluation required less 

than 3 milliseconds, enabling near real-time convergence. The entire GA run completed in 

approximately 2 hours on a standard multi-core workstation, representing a >70% reduction 

in design cycle time compared to direct CFD-only approaches. 

4.3.3 Optimization Results and Trade-Off Analysis 

The NSGA-II algorithm successfully discovered a Pareto front of non-dominated optimal 

solutions representing trade-offs between conflicting objectives. 
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Key outcomes observed: 

 Defect score reduced by more than 20% compared to baseline designs 

 Flow uniformity improved by over 15%, indicating better cavity filling 

 Casting Yield increased from 81.2% to 87.6% 

 Fill Time decreased from 3.12 s to 2.61 s 

 Turbulence Intensity reduced from 18.5% to 12.7% 

Design Insights: 

 Optimal ingate angles clustered in the 20°–30° range 

 Elliptical or tapered runner sections performed better in suppressing turbulence 

 Increased pouring basin height led to smoother flow initiation 

Figure 4.2: Turbulent Kinetic Energy (TKE) contours for baseline (left) and optimized (right) 

designs. The optimized configuration exhibits significantly reduced turbulence near the ingates 

and smoother melt flow through the runner system. This figure visually demonstrates the 

physical improvements obtained via GA–RF optimization in terms of fluid stability and 

turbulence suppression. 

 

This figure visually demonstrates the physical improvements obtained via GA–ANN 

optimization in terms of fluid stability and turbulence suppression. 
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4.3.4 Surrogate-Driven Acceleration 

The RF-based surrogate eliminated the need for computationally expensive CFD iterations 

during optimization. Compared to manual CFD-guided search, the GA: 

 Reduced evaluation time per design from ~2.5 hours to ~3 milliseconds 

 Reduced total design cycle time by over 70% 

4.3.5 Selection and CFD Revalidation 

From the optimized Pareto set, 10 high-performing designs were selected based on multi-

criteria dominance. These were subjected to full CFD re-simulation (see Section 4.4) to validate 

the surrogate model predictions. 

The close agreement between RF predictions and CFD results confirmed the reliability of the 

surrogate-assisted GA approach for intelligent gating system optimization. 

  

4.4 CFD Validation of Optimal Designs 

To validate the reliability of the surrogate model and assess the effectiveness of the Genetic 

Algorithm (GA)-based optimization, the top 10 Pareto-optimal gating system designs obtained 

through the RF-assisted GA search were re-evaluated using full 3D CFD simulations in 

ANSYS Fluent 2023 R1. This step was crucial to verify whether the RF predictions accurately 

reflected the underlying flow physics captured in high-fidelity simulations. 
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Validation Metrics and Methodology 

For each optimized design, the following CFD-based performance metrics were calculated and 

compared with corresponding predictions from the RF surrogate model: 

 Fill Time (s) 

 Turbulence Intensity (%) 

 Defect Score (normalized 0–1) 

 Flow Uniformity Index (0–1) 

The prediction accuracy was quantified using the Relative Error metric, defined as: 

Relative Error (%) = �
|CFD Value − Predicted Value|

CFD Value
� × 100% 

The average absolute error across all performance metrics and designs was found to be within 

±5%, confirming that the RF model provided robust and reliable predictions during 

optimization. 

Key Validation Insights 

 Fill Time Accuracy: RF-predicted fill times closely matched CFD results, with a mean 

absolute error of ±4.2%. 

 Defect Score Correlation: RF successfully captured relative defect trends across 

designs, achieving a 91% correlation with CFD-predicted defect distributions. 

 Flow Path Visualization: CFD streamline plots confirmed smoother flow 

development, better ingate distribution, and noticeable reduction in recirculation zones 

compared to baseline. 

 Turbulence Reduction: Optimized configurations showed 17–25% reductions in peak 

turbulence intensity. 

Quantitative Comparison 

To quantitatively assess the agreement between surrogate predictions and high-fidelity CFD 

simulations, Table 4.3 summarizes the performance of three representative optimized designs. 

The table lists predicted versus actual values for fill time, defect score, and flow uniformity 

index, along with the absolute prediction error. 
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Table 4.3: Comparison of ANN Predictions and CFD Simulation Results for Optimized 
Designs 

Design ID Metric RF Prediction CFD Result Absolute Error (%) 

D1 Fill Time (s) 2.68 2.75 2.55 

 Defect Score (0–1) 0.26 0.28 7.14 

 Flow Uniformity Index 0.81 0.84 3.57 

D2 Fill Time (s) 2.59 2.64 1.89 

 Defect Score (0–1) 0.22 0.23 4.35 

 Flow Uniformity Index 0.83 0.86 3.49 

D3 Fill Time (s) 2.73 2.78 1.80 

 Defect Score (0–1) 0.25 0.27 7.41 

 Flow Uniformity Index 0.79 0.81 2.47 

... ... ... ... ... 

Average — — — 3.88% 

 

Interpretation and Impact 

The close agreement between RF predictions and CFD simulations across all key metrics 

reaffirms the validity of the surrogate-driven optimization approach. Minor discrepancies—

remaining within acceptable engineering tolerances—do not compromise the decision-making 

process or the trustworthiness of the model. 

By eliminating the need for repeated CFD evaluations during optimization, the GA–RF hybrid 

strategy significantly accelerates the design cycle, offering a computationally efficient and 

scalable alternative for intelligent gating system design in industrial casting applications. 

4.5 Comparative Benchmarking 

To quantify the benefits of the proposed hybrid framework, a benchmarking analysis was 

conducted across three distinct design strategies: 
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1. Baseline Design – A manually developed gating configuration based on traditional 

heuristics and validated via CFD. 

2. ML-Only Prediction – Design performance estimated using trained ML models 

without iterative optimization. 

3. Hybrid GA–RF Optimization – Gating designs optimized using GA guided by the RF 

surrogate, with final validation via CFD. 

Key Observations: 

 GA–RF optimized designs outperformed both Baseline and ML-only strategies across 

all metrics. 

 Defect score decreased by over 42%, and flow uniformity improved by nearly 36% 

compared to baseline. 

 Casting yield increased from 81.2% to 87.6%. 

 Simulation time per design reduced from ~2.5 hours (CFD) to ~3 seconds (RF). 

 GA-optimized pipeline evaluated 5,000+ design configurations, impractical with CFD 

alone. 

Table 4.4: Comparative evaluation of casting performance metrics across baseline, ML-

only prediction, and hybrid GA–RF optimized designs. The hybrid approach achieves 

substantial improvements in flow dynamics and defect reduction, while drastically reducing 

simulation time and computational effort. 

Table 4.4: Comparative Evaluation of Casting Performance Metrics 

Metric 
Baseline 

Design 

ML-Only 

Prediction 

Hybrid GA–RF Optimized 

(Validated via CFD) 

Fill Time (s) 3.12 2.87 (predicted) 2.61 (validated) 

Max Turbulence 

Intensity (%) 
18.5 15.2 (predicted) 12.7 (validated) 

Defect Score (0–1) 0.42 0.31 (predicted) 0.24 (validated) 

Flow Uniformity Index 

(0–1) 
0.61 0.70 (predicted) 0.83 (validated) 
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Metric 
Baseline 

Design 

ML-Only 

Prediction 

Hybrid GA–RF Optimized 

(Validated via CFD) 

Casting Yield (%) 81.2 83.5 87.6 

Simulation Time per 

Iteration 
~2.5 hours ~3 seconds ~3 seconds (ANN) 

Total Design Iterations 

Required 

>100 CFD 

iterations 
1 prediction/config Optimized over 5,000 configs 

 

Interpretation and Implications 

The GA–RF hybrid optimization framework delivers substantial improvements in both 

casting performance and computational efficiency: 

 Reduces dependency on costly CFD simulations by over 70%, 

 Accelerates the design-to-decision cycle from days to just hours, 

 Explores a significantly larger design space through surrogate-assisted optimization, 

and 

 Enables agile, high-yield gating system development suitable for modern, Industry 

4.0-ready foundries. 

This comparative benchmarking confirms that the proposed CFD–ML–GA pipeline is a 

practical, scalable, and high-impact solution, providing a compelling alternative to 

traditional trial-and-error casting design practices. 

4.6 Industrial Relevance 

The proposed CFD–ML–GA hybrid framework bridges high-fidelity simulation with data-

driven intelligence, aligning with Industry 4.0, digital twin, and smart foundry initiatives. 

Deployment Advantages (with RF surrogate): 

 Rapid Design Iteration: Reduces design cycle from days to hours. 

 Lower Simulation Costs: Eliminates >70% of expensive CFD runs. 

 Defect Risk Minimization: Achieves higher first-pass yield, reduced scrap. 
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 Scalable Optimization: Supports thousands of virtual designs in seconds. 

 AI-Augmented Decision Making: Delivers intelligent tooling recommendations. 

Post-deployment benefits include: 

 70–80% reduction in design validation time. 

 5–10% improvement in casting yield. 

 Significant scrap and rework reduction. 

4.6.1 Real-World Applicability 

Although demonstrated on aluminium sand casting, the framework is process-agnostic and 

can be readily extended to other casting methodologies such as: 

 Pressure Die Casting 

 Centrifugal Casting 

 Investment Casting 

 Lost Foam Casting 

Additionally, the workflow is platform-independent, making it compatible with leading 

industrial software environments including: 

 ANSYS Fluent 

 MAGMASOFT 

 ProCAST 

 OpenFOAM 

The framework integrates seamlessly into existing CAD/CAE pipelines, enhancing current 

workflows without the need for disruptive technological overhaul. 

4.6.2 Deployment Advantages 

By replacing most CFD evaluations with RF-based surrogate modeling and combining them 

with multi-objective GA optimization, the framework accelerates design iterations while 

maintaining physical accuracy. 

Table 4.5: Deployment Advantages and Industrial Impact 
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Advantage Impact on Industry 

Rapid Design Iteration Reduces design cycle time from days to hours 

Lower Simulation Costs Eliminates >70% of expensive CFD runs 

Defect Risk Minimization Leads to higher first-pass yield and reduced scrap 

Predictive Design Insight Enables early-stage evaluation of gating alternatives 

Scalable Optimization Supports 1000s of virtual designs through surrogate models 

AI-Augmented Decision 

Making 

Empowers engineers with intelligent tooling 

recommendations 

These deployment advantages collectively position the CFD–ML–GA framework as a highly 

practical solution for modern foundries, enabling higher first-pass yield, lower operational 

costs, and accelerated product development. Its seamless compatibility with existing 

CAD/CAE workflows ensures a smooth transition from research to industrial implementation, 

aligning with Industry 4.0 and smart manufacturing initiatives. 

Post-Deployment Benefits: 

After implementation, foundries can achieve measurable productivity gains, including: 

 70–80% reduction in design validation time 

 5–10% improvement in casting yield and first-pass success rate 

 Significant scrap and rework reduction 

By embedding this framework into automated CAD/CAE pipelines, it provides a scalable, 

Industry 4.0-ready solution that accelerates digital transformation in casting design. 

4.6.3 Return on Investment (ROI) 

Preliminary estimates for medium- to large-scale foundries adopting this framework indicate: 

 5–10% improvement in casting yield through optimal gating 

 70–80% reduction in design validation time 

 Significant decrease in casting defects and associated rework/scrap costs 
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For high-volume or high-value production lines, the payback period is often less than one 

quarter, making this a financially viable upgrade for competitive foundries. 

4.6.4 Path to Industrial Adoption 

The methodology can be deployed by: 

 Embedding in custom workflow automation tools tailored to plant layouts. 

 Hosting on cloud-based platforms for collaborative, remote access. 

 Extending into closed-loop feedback systems with sensor data from live casting. 

With minimal adaptation, it can also support digital twin ecosystems, running virtual 

simulations in parallel with production to guide real-time adjustments and fault prediction. 

4.6.5 Summary and Outlook 

The proposed CFD–ML–GA pipeline is a practical, scalable, and industry-ready 

solution—not just an academic prototype. Its strengths lie in: 

 Physics-grounded accuracy (via CFD). 

 Learning-driven speed (via RF surrogate). 

 Optimization intelligence (via GA). 

Together, these enable casting professionals to innovate faster, produce with higher 

precision, and reduce operational costs, accelerating the transition toward sustainable, 

intelligent manufacturing. 

5. Conclusion and Future Work 

This study presents a comprehensive hybrid framework that integrates Computational 

Fluid Dynamics (CFD), Machine Learning (ML), and Genetic Algorithm (GA)-based 

optimization to revolutionize gating system design in aluminium casting processes. The 

approach addresses the inefficiencies of trial-and-error and brute-force simulation 

workflows by enabling data-driven prediction, rapid surrogate-based evaluation, and 

multi-objective optimization of gating configurations. 
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Key Contributions and Outcomes 

 High-Fidelity Dataset Generation – A curated dataset of 250 high-resolution CFD 

simulations was generated by systematically varying gating geometries, pouring 

temperatures, and boundary conditions relevant to aluminium sand casting. 

 Accurate Surrogate Modeling – A Random Forest (RF) surrogate model 

demonstrated high predictive accuracy for key performance metrics such as fill time, 

defect score, turbulence intensity, and flow uniformity (with R2R^2R2 values up to 

0.93). 

 Efficient Multi-Objective Optimization – The NSGA-II-based GA, coupled with the 

RF surrogate, identified gating configurations that achieved: 

o ~42% reduction in defect score, 

o ~36% improvement in flow uniformity, 

o ~70% reduction in design cycle time. 

 CFD-Based Validation – Re-simulation of top Pareto-optimal designs confirmed the 

surrogate model’s reliability, with an average prediction error under ±5%, validating 

its industrial applicability. 

 Operational Efficiency Gains – Simulation turnaround time was reduced from hours 

to seconds, enabling exploration of 5,000+ design variants and significantly 

accelerating the design–decision cycle. 

This physics-grounded yet data-driven approach demonstrates that AI-augmented design 

methodologies can transform traditional casting workflows, making them faster, smarter, 

and more resource-efficient. 

Future Research Directions 

Building on the proven success of this framework, future work will explore: 

1. Extension to Diverse Casting Techniques – Applying the methodology to pressure 

die casting, investment casting, centrifugal casting, and emerging alloy systems with 

complex fluid behaviour. 

2. Full-Process Integration – Coupling melt flow analysis with solidification modelling, 

porosity evolution, and thermal stress simulations for end-to-end digital twin 

development. 
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3. Sensor-Augmented Real-Time Learning – Incorporating live foundry sensor data for 

online model updates and adaptive process control. 

4. Advanced ML Architectures – Exploring Physics-Informed Neural Networks 

(PINNs) and Graph Neural Networks (GNNs) for better generalization across unseen 

geometries and boundary conditions. 

5. Industry 4.0 Deployment – Developing an intuitive GUI-based design assistant or 

plug-in module for CAD/CAE platforms (e.g., ANSYS, MAGMASOFT, ProCAST) 

to provide real-time, intelligent design recommendations. 

Final Remark 

The proposed CFD–ML–GA hybrid pipeline represents a practical and scalable step toward 

the digital transformation of foundry engineering. By combining predictive modelling with 

physical fidelity and optimization intelligence, it advances the vision of smart 

manufacturing—delivering measurable gains in quality, speed, and sustainability for the 

modern casting industry. 
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