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Abstract: 

Natural products have long been a cornerstone of drug discovery, offering structurally diverse 

and pharmacologically active compounds that have led to numerous breakthrough therapeutics. 

Despite their immense potential, traditional natural product research faces significant 

challenges, including labor-intensive extraction procedures, complex compound structures, and 

fragmented, non-standardized datasets. The growing volume and complexity of phytochemical 

and biological data have necessitated the adoption of advanced computational approaches. 

In this context, machine learning (ML) and data science have emerged as transformative tools, 

enabling automated analysis, prediction, and integration across multiple stages of natural 

product research. This review provides a comprehensive examination of ML applications in the 

field, with specific emphasis on phytochemical classification, dereplication, biological activity 

prediction, ADMET profiling, and the integration of ethnobotanical data using natural language 

processing. We also highlight the role of deep learning, network pharmacology, and 

cheminformatics pipelines in accelerating bioactive compound discovery. A bibliometric meta-

analysis was conducted using publications from 2000 to 2024 sourced from Scopus, PubMed, 

and Web of Science. The analysis reveals a sharp rise in research output post-2015, with key 

contributions from China, India, and the USA. Emerging trends include the use of explainable 

AI, multi-target modelling, and federated learning frameworks. 

The findings underscore the importance of open-access datasets, interdisciplinary 

collaboration, and transparent model development. As data-driven methodologies continue to 

evolve, they are poised to redefine how natural product research is conducted—enabling faster, 

more accurate, and scalable discovery of plant-based therapeutics. 

Keywords: Natural Products, Machine Learning, Phytochemicals, Data Science, 

Bioactivity Prediction 
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1. Introduction 

1.1 Importance of Natural Products in Drug Discovery and Development 

Natural products have long served as a cornerstone for drug discovery, offering a vast reservoir 

of structurally diverse and biologically active compounds[1, 2]. Nearly 50% of all FDA-

approved drugs are derived from or inspired by natural sources, particularly plants, marine 

organisms, and microorganisms[3]. These bioresources provide unique chemical scaffolds not 

readily available through synthetic libraries, making them invaluable in the search for novel 

therapeutics against cancer, infectious diseases, metabolic disorders, and neurological 

conditions. Traditional knowledge systems, such as Ayurveda, Traditional Chinese Medicine, 

and ethnobotanical practices, further enrich the value of natural products in therapeutic 

exploration[4]. 

1.2 Challenges in Traditional Natural Product Research 

Despite their promise, natural product research is fraught with challenges. The isolation, 

purification, and structural elucidation of bioactive compounds from complex extracts require 

time-consuming and resource-intensive efforts[5]. Dereplication—the process of identifying 

known compounds to avoid rediscovery—is often inefficient. Additionally, data generated in 

phytochemical and pharmacological studies is heterogeneous, fragmented, and poorly 

standardized, making integration and interpretation difficult[6]. These challenges hinder rapid 

progression from bench to bedside. 

1.3 Emergence of Machine Learning and Data Science in Biomedicine 

Machine learning (ML) and data science have emerged as transformative tools in biomedical 

research, offering solutions for handling large, complex datasets[7]. From predictive modelling 

and pattern recognition to automated image analysis and natural language processing, ML 

enables high-throughput, cost-effective decision-making[8]. In the realm of natural products, 

these technologies are beginning to revolutionize phytochemical screening, compound activity 

prediction, and systems-level analysis. 

This review aims to critically evaluate how machine learning and data science are being 

integrated into natural product research. It seeks to highlight current applications, identify 

methodological trends, and assess the bibliometric landscape to understand the field's 

evolution. The objective is to bridge the gap between traditional natural product workflows and 

modern computational methodologies, it employs a meta-analytic and bibliometric approach, 

analyzing peer-reviewed publications from major scientific databases such as Scopus, PubMed, 

and Web of Science. A combination of quantitative and qualitative assessments is used to 

identify key trends, algorithms employed, research hotspots, and collaboration networks. The 

focus is on publications from 2000 to 2024 that intersect machine learning, data science, and 

natural product research. 

2. Methodology for Meta-Analysis 

2.1 Data Sources 
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To ensure comprehensive coverage of the literature, three major scientific databases were 

searched: Scopus, PubMed, and Web of Science. These databases were selected due to their 

wide indexing of peer-reviewed journals across disciplines, including biomedical sciences, 

computational biology, pharmacognosy, and data science. PubMed was particularly useful for 

retrieving studies with biomedical relevance, while Scopus and Web of Science provided 

broader cross-disciplinary insights, including conference proceedings, book chapters, and 

citation data. 

2.2 Search Strategy and Data Retrieval 

To ensure comprehensive coverage of relevant literature, a systematic and structured search 

strategy was designed and implemented across multiple bibliographic databases, including 

Scopus, PubMed, and Web of Science[9]. The objective was to retrieve publications focusing 

on the intersection of machine learning (ML), data science, and natural product research, with 

an emphasis on pharmacognosy and phytochemistry applications[10]. 

The search utilized a combination of carefully selected keywords and subject-specific 

terminology to capture a broad spectrum of relevant studies. The primary search terms 

included: 

 “machine learning”, “deep learning”, “artificial intelligence”, 

 “natural products”, “phytochemicals”, “pharmacognosy”, 

 “data science”, “predictive modelling”, “QSAR”, and “dereplication”. 

To enhance precision and sensitivity of the search, Boolean operators (AND/OR) were 

strategically applied. For instance, combinations such as: 

 “machine learning” AND “natural products”, 

 “phytochemicals” AND “predictive modelling”, 

 “QSAR” OR “deep learning” AND “pharmacognosy”, were used to extract literature 

that covered both the computational techniques and their phytochemical applications. 

Additionally, advanced filters were employed to refine the results. These included limiting the 

document type to original research articles, review papers, and conference proceedings, as 

these sources are most likely to provide substantial methodological insights and empirical data. 

The language filter was restricted to English to ensure consistency and accessibility in analysis. 

The publication year filter was set from 2000 to 2024, aligning with the timeline of significant 

growth in AI applications within biomedical and pharmaceutical domains. 

All retrieved citations were imported into bibliographic management tools (e.g., EndNote, 

Zotero) for de-duplication and screening. The final dataset formed the basis for both qualitative 

synthesis and bibliometric/meta-analytic evaluations. 

2.3 Inclusion/Exclusion Criteria: 

2.3.1 Inclusion Criteria 
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To ensure the quality and relevance of the studies analyzed in this review, a rigorous set of 

inclusion criteria was established prior to data extraction and bibliometric evaluation[11]. 

These criteria were designed to selectively capture publications that represent substantive 

contributions at the intersection of natural product research and machine learning (ML) or data 

science methodologies[12]. 

2.3.1.1 Relevance to Natural Product Research and Computational Approaches 

Only those publications were included that clearly demonstrated the integration of natural 

product research encompassing phytochemicals, medicinal plants, pharmacognosy, or 

secondary metabolites with machine learning, deep learning, artificial intelligence, or data 

science methodologies[13]. This includes studies employing predictive modelling, QSAR 

analysis, classification algorithms, chemoinformatics, virtual screening, or natural language 

processing to solve research questions related to the identification, characterization, or 

pharmacological evaluation of natural compounds[14]. 

2.3.1.2 Peer-Reviewed Scholarly Literature 

To ensure scientific rigor and reliability, only peer-reviewed publications were considered. This 

encompassed: 

 Original research articles: Empirical studies demonstrating novel applications or 

results. 

 Review articles: Thematic syntheses that analyze trends, methods, or challenges. 

 Meta-analyses: Studies that quantitatively synthesize findings across multiple datasets 

or publications[15, 16]. 

2.3.1.3 Publication Timeframe 

To capture the evolution and growing sophistication of computational approaches in 

phytochemical research, the inclusion period was defined from January 2000 to May 2024. 

This timeframe was chosen to reflect the past two decades of technological advancement in 

ML and AI, particularly relevant to pharmaceutical sciences and cheminformatics[17]. 

2.3.1.4 Language 

Only articles published in English were included, to ensure consistent interpretation and 

analysis across textual data, abstracts, and keyword extraction in the meta-analytic phase[18]. 

2.3.2 Exclusion Criteria 

To maintain the focus, clarity, and analytical depth of this review, a well-defined set of 

exclusion criteria was applied during the screening and selection process. These criteria were 

used to eliminate studies that did not align with the review’s core objective—namely, the 

integration of machine learning (ML) and data science approaches in natural product 

research[19]. 

2.3.2.1 Non-English Language Publications 
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Studies published in languages other than English were excluded. While non-English literature 

may contain valuable insights, the lack of accessible translations and standardized indexing 

posed challenges in terms of content interpretation, quality appraisal, and data extraction. This 

linguistic filter ensured consistency in analysis and avoided misinterpretation due to language 

barriers[20]. 

2.3.2.2 Purely Experimental Studies Lacking Computational Methodology 

Articles that focused solely on experimental procedures such as extraction, isolation, or 

bioassay of natural compounds without incorporating any computational tools or data-driven 

methodologies were excluded. For instance, studies that reported biological screening or 

phytochemical characterization of plant extracts but did not employ machine learning models, 

statistical prediction tools, or chemoinformatic techniques were deemed outside the scope of 

this review. The emphasis was strictly on computational integration[21, 22]. 

2.3.2.3 Studies with Insufficient Methodological Detail 

Articles that lacked sufficient transparency in their methodological framework were also 

excluded. This included publications where the application of ML or data science was only 

superficially mentioned, without clearly describing: 

 The algorithms or models used 

 The type and source of data 

 Evaluation metrics or performance outcomes 

 Reproducibility measures (e.g., code availability or dataset references) 

 Such studies were considered methodologically weak and unsuitable for inclusion in 

the bibliometric or thematic analyses[23]. 

2.4 Tools Used 

For bibliometric mapping and trend visualization, the following tools were employed: 

VOSviewer: for keyword co-occurrence, citation networks, and author collaboration analysis 

R Bibliometrix package: for quantitative bibliometric summaries 

Excel and Python: for data cleaning, normalization, and frequency analysis of ML models 

used[24]. 

2.5 Parameters Analyzed: 

The meta-analysis extracted and analyzed data on: 

 Publication year to examine growth trends 

 Author affiliations and countries to map global contributions 

 Journals and publishers to identify dominant publication venues 

 ML algorithms applied (e.g., SVM, Random Forest, CNNs) 

 Application areas, including bioactivity prediction, dereplication, and compound 

classification[25]. 
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3. Overview of Machine Learning in Natural Product Research 

3.1 Common ML Algorithms Used 

3.1.1 Supervised Learning: SVM, Random Forest, ANN 

Supervised learning algorithms are widely used in natural product research to develop 

predictive models based on labelled data. Support Vector Machines (SVM) are frequently 

applied for classification tasks, such as distinguishing active vs. inactive compounds or 

predicting pharmacological classes. Random Forest (RF), an ensemble method, is valued for 

its robustness and interpretability, especially in bioactivity prediction and toxicity modeling. 

Artificial Neural Networks (ANNs), inspired by the human brain, learn complex non-linear 

relationships and are applied in QSAR modelling and drug-likeness prediction[26]. 

3.1.2 Unsupervised Learning: PCA, Clustering 

Unsupervised learning helps explore hidden patterns in large phytochemical datasets. Principal 

Component Analysis (PCA) is commonly used for dimensionality reduction and visualizing 

chemical space. Clustering algorithms such as k-means or hierarchical clustering help group 

compounds based on structural or bioactivity similarity, aiding in scaffold identification, 

dereplication, and target profiling[27]. 

3.1.3 Deep Learning: CNNs, RNNs, Transformers 

Deep learning models such as Convolutional Neural Networks (CNNs) are increasingly used 

to analyze spectral data (e.g., NMR, MS) or chemical images. Recurrent Neural Networks 

(RNNs) are useful for modeling sequential data, such as SMILES strings. Transformers, a more 

recent architecture, show promise in generating novel compound structures, predicting binding 

affinities, and automating literature mining[28, 29]. 

3.2 Key Data Science Techniques 

3.2.1 Data Mining, Feature Selection, Chemoinformatics 

Data mining techniques are essential for extracting meaningful patterns from large biological 

and chemical datasets. Feature selection methods reduce dimensionality by identifying the 

most relevant molecular descriptors. Chemoinformatics integrates chemical structure analysis, 

similarity searching, and molecular fingerprinting, facilitating virtual screening and compound 

clustering[14, 30]. 

3.2.2 QSAR Modelling and Compound Activity Prediction 

Quantitative Structure-Activity Relationship (QSAR) modelling is a core application in natural 

product research[31]. ML-based QSAR models correlate structural features with biological 

activity, enabling virtual screening and prioritization of bioactive leads. Advanced ML 

approaches increase the accuracy and generalizability of these models, especially when 

integrated with curated datasets[32]. 

3.2.3 Molecular Docking and Virtual Screening Using AI 
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AI-enhanced molecular docking accelerates the in silico prediction of binding affinities 

between phytochemicals and target proteins. ML models trained on docking scores, binding 

energies, and experimental data improve the selection of promising candidates. Virtual 

screening pipelines increasingly incorporate ML to rank compounds based on predicted 

efficacy, ADMET profiles, and off-target effects[33, 34]. 

4. Application Areas of ML and Data Science in Natural Products  

Machine learning (ML) and data science have transformed several key domains within natural 

product research, enabling faster, data-driven decision-making. One of the primary applications 

lies in phytochemical screening and classification, where supervised models are used to predict 

the presence of bioactive compounds based on spectral, structural, or taxonomic features. 

Image-based deep learning approaches are also being applied to identify plant species and 

anatomical parts with high accuracy. 

In dereplication and structure elucidation, ML tools analyze complex NMR and mass 

spectrometry data to rapidly identify known compounds, avoiding redundancy. Algorithms like 

convolutional neural networks (CNNs) can even interpret raw spectral data for automatic 

compound annotation. Another critical area is bioactivity prediction, where QSAR models built 

using random forest, SVM, or neural networks forecast a compound's pharmacological activity. 

These models significantly streamline the virtual screening of natural compound libraries. 

ML also aids in ADMET prediction—anticipating absorption, toxicity, metabolism, and drug-

likeness of phytochemicals—by modeling large pharmacokinetic datasets. Additionally, text 

mining and natural language processing (NLP) are used to extract valuable information from 

ethnobotanical literature and biomedical articles, supporting novel lead identification[35]. 

4.1 Phytochemical Screening and Classification 

4.1.1 Automated Identification of Bioactive Constituents 

Machine learning has enabled the rapid identification of bioactive compounds from complex 

natural extracts through automated prediction models. By training supervised learning 

algorithms on databases of known phytochemicals and their biological activities, these systems 

can predict potential bioactivity based on molecular descriptors, chemical fingerprints, and 

structural patterns. Methods such as Random Forest, Support Vector Machines, and neural 

networks have been employed to predict antibacterial, anticancer, or anti-inflammatory 

activities with high accuracy. This automation helps prioritize compounds for further in vitro 

or in vivo validation, significantly reducing time and cost in natural product drug discovery 

pipelines[36]. 

4.1.2 Plant Taxonomy Prediction Using Spectral or Image Data 

Advanced image recognition and spectral analysis powered by deep learning models—

particularly Convolutional Neural Networks (CNNs)—are now applied to classify plant species 

and predict their chemotaxonomic profiles. These models analyze images of leaves, seeds, or 

flowers and can even integrate near-infrared (NIR) or Raman spectroscopy data to classify 
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plants with high precision. This technology is particularly useful for authenticating medicinal 

plants, identifying adulterants, and mapping biodiversity in poorly documented regions. The 

integration of spectral data and AI accelerates the standardization and quality control of plant-

based raw materials[37]. 

4.2 Dereplication and Structure Elucidation 

4.2.1 ML in NMR, MS, and Spectral Data Analysis 

Machine learning algorithms are increasingly applied in the interpretation of nuclear magnetic 

resonance (NMR) and mass spectrometry (MS) data for structure elucidation. Deep learning 

models can detect patterns in complex spectra, assist in peak deconvolution, and even predict 

molecular substructures. This enables high-throughput analysis of plant extracts, even in the 

presence of overlapping signals, enhancing the efficiency of compound identification[38]. 

4.2.2 Tools for Compound Dereplication (e.g., GNPS, CFM-ID) 

Automated dereplication platforms such as GNPS (Global Natural Products Social Molecular 

Networking) and CFM-ID (Competitive Fragmentation Modeling for Metabolite 

Identification) leverage machine learning to annotate MS/MS spectra and match them with 

known compounds in reference databases. GNPS uses molecular networking to group 

structurally similar compounds, while CFM-ID employs probabilistic models to predict 

fragmentation patterns. These tools drastically reduce the effort wasted in rediscovering known 

molecules, allowing researchers to focus on novel entities. Their integration into natural 

product workflows is transforming how secondary metabolites are cataloged, compared, and 

explored across research groups globally[39]. 

4.3 Biological Activity Prediction 

4.3.1 ML-Driven QSAR Models 

Quantitative Structure–Activity Relationship (QSAR) modeling is a cornerstone in natural 

product bioactivity prediction. ML-driven QSAR models learn from large datasets of molecular 

structures and associated biological activities to build predictive models. Algorithms like 

Random Forest, Support Vector Machines, and deep learning neural networks are used to model 

nonlinear relationships between descriptors (e.g., topological indices, electronic properties) 

and pharmacological outcomes. These models are essential in early-stage screening to identify 

potent natural product leads with minimal experimental validation[40]. 

4.3.2 Multi-Target Activity Prediction 

Natural products often interact with multiple biological targets, making them ideal candidates 

for polypharmacology. ML models trained on bioactivity databases like ChEMBL or 

BindingDB can predict interactions of a single compound with multiple receptors or enzymes. 

Multi-task learning, graph neural networks, and transfer learning approaches have emerged to 

improve the accuracy of such predictions. These models assist in identifying compounds 

suitable for treating multifactorial diseases such as cancer, diabetes, or neurodegenerative 

disorders[41]. 
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4.3.3 Network Pharmacology and Systems Biology Approaches 

Integrating ML with network pharmacology enables the modeling of complex interactions 

between natural products, targets, and disease pathways. Systems biology approaches map 

compound-target-disease relationships using biological networks. ML helps analyze these 

networks to identify key nodes, synergistic effects, and mechanistic pathways. These insights 

guide the design of multi-target therapeutics and biomarker identification[42, 43]. 

4.4 Drug-Likeness and ADMET Predictions 

4.4.1 Predictive Modeling of Absorption, Toxicity, Metabolism 

ML models are instrumental in predicting the ADMET (Absorption, Distribution, Metabolism, 

Excretion, and Toxicity) properties of natural products. Tools like pkCSM, admetSAR, and 

DeepTox apply supervised learning on curated datasets to forecast pharmacokinetic behaviors 

and toxicological endpoints. These predictions help eliminate compounds with poor drug-like 

profiles early in the pipeline, conserving time and resources[44]. 

4.4.2 Integration with Cheminformatics Pipelines 

ML algorithms are often embedded within broader cheminformatics platforms that include 

molecular descriptor calculation, property prediction, and compound ranking. These integrated 

pipelines facilitate seamless screening of phytochemical libraries for drug-likeness, Lipinski’s 

rule violations, BBB permeability, and hepatotoxicity. Combining cheminformatics with AI 

enables a more holistic evaluation of natural product drug candidates[45]. 

4.5 Ethnobotanical and Text Mining Applications 

4.5.1 NLP in Mining Traditional Knowledge Literature 

Natural Language Processing (NLP) is increasingly used to extract medicinal plant usage data 

from unstructured text sources such as ethnobotanical surveys, traditional medicine databases, 

and historical manuscripts. Tools like BioBERT and SpaCy are trained to identify disease 

names, plant species, preparation methods, and therapeutic claims. This automated extraction 

facilitates the systematic digitization of centuries-old knowledge, preserving indigenous 

practices and guiding new pharmacological investigations[46]. 

4.5.2 Predictive Models for Plant Selection Based on Ethnomedicinal Use 

By integrating ethnobotanical data with ML, predictive models can prioritize plant species 

likely to yield bioactive compounds. These models combine factors such as traditional use 

frequency, taxonomic relatedness, and habitat information to generate ranked lists of promising 

candidates. This strategy increases the success rate of bioprospecting by directing resources 

toward plants with a higher likelihood of pharmacological relevance[47, 48]. 

5. Bibliometric and Scientometric Trends: 

5.1 Growth of Publications (Year-wise Trend) 
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The meta-analysis revealed a significant rise in publications at the intersection of machine 

learning, data science, and natural product research over the last two decades. From 2000 to 

2010, publication activity was sparse, with fewer than 20 articles per year. However, a 

noticeable uptick began post-2015, coinciding with the increasing accessibility of AI tools and 

open-source ML platforms. The period from 2018 to 2024 saw exponential growth, with the 

number of relevant publications tripling, especially in journals focused on computational 

biology, chemoinformatics, and phytochemistry. The COVID-19 pandemic also accelerated 

interest in plant-based antivirals and in silico screening, contributing to this surge[49-51]. 

5.2 Leading Journals, Authors, and Institutions 

Journals such as Journal of Cheminformatics, Phytomedicine, Frontiers in Pharmacology, and 

Computational and Structural Biotechnology Journal were among the most active publishers. 

Prominent authors included researchers affiliated with Chinese Academy of Sciences, Indian 

Institute of Science, University of São Paulo, and Stanford University, often publishing 

interdisciplinary work. Leading contributors demonstrated a strong cross-pollination between 

computational sciences, pharmacy, and molecular biology. 

5.3 Top Contributing Countries and Collaborations 

The most active countries in this research domain included China, India, United States, Brazil, 

and Germany. International collaborations were prominent, with multi-author papers often 

involving cross-continental partnerships. China and India showed strong internal research 

networks, while the US and EU countries leaned towards collaborative, multi-institutional 

studies. These partnerships were particularly evident in shared datasets, consortium-based 

virtual screening, and open-source tool development. 

5.4 Co-Citation, Co-Authorship, and Keyword Co-Occurrence Networks 

Analysis using VOSviewer revealed dense co-citation networks, highlighting foundational 

works in QSAR, cheminformatics, and deep learning applications. Co-authorship networks 

emphasized the rise of interdisciplinary teams combining phytochemists, data scientists, and 

pharmacologists. Keyword co-occurrence mapping identified frequently used terms such as 

“QSAR,” “machine learning,” “natural compounds,” “virtual screening,” and “drug 

discovery,” with recent shifts toward “deep learning,” “network pharmacology,” and “multi-

target prediction.” 

5.5 Hot Topics and Emerging Trends from Keyword Analysis 

Emerging themes include the integration of transformer-based models, automated 

dereplication, systems pharmacology, and multi-omics analysis. Recent years have also seen a 

shift from single-compound screening to holistic plant extract profiling and synergistic effect 

prediction. The fusion of ethnopharmacology with AI-driven screening represents a cutting-

edge trend. Additionally, the use of knowledge graphs and explainable AI (XAI) in 

understanding compound-disease relationships is rapidly gaining traction, indicating the field’s 

evolution toward transparent and interpretable models[52]. 
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Table 1: Topics and Emerging Trends in Machine Learning-Based Natural Product 

Research 

Emerging Topic Description Relevance/Trend 
Deep Learning Use of CNNs, RNNs, and transformer 

models for bioactivity prediction, 
dereplication, and image/spectral 
analysis 

Rapidly growing since 
2020 

Network Pharmacology Modeling of compound–target–
disease networks to understand multi-
target effects 

Key trend in systems-
level herbal drug 
research 

Explainable AI (XAI) Interpretable ML models to explain 
predictions (e.g., molecular features 
contributing to bioactivity) 

Gaining traction in 
2023–2024 

Multi-Target Prediction Prediction of compound interactions 
with multiple biological targets 

Central to 
polypharmacology 
approaches 

Automated 
Dereplication 

AI-powered identification of known 
compounds via MS/NMR data and 
molecular networking 

Strong uptake in 
metabolomics 
workflows 

Integration with 
Ethnopharmacology 

Combining traditional knowledge 
with ML-based compound 
prioritization 

Emerging 
interdisciplinary frontier 

Virtual Screening & 
QSAR Modeling 

In silico prediction of compound 
activity using cheminformatics and 
ML 

Still foundational; 
evolving with new data 

Multi-Omics 
Integration 

ML integration of genomics, 
metabolomics, and proteomics for 
target discovery 

Growing interest post-
2021 

Knowledge Graphs in 
Drug Discovery 

Use of graph-based AI to visualize 
and predict compound–disease 
associations 

Cutting-edge technique 
in 2024–2025 

Table 2: Bibliometric and Scientometric Trends in ML Applications in Natural Product 

Research (2000–2024) 

Parameter Key Findings 
Publication Trend Steady rise from 2000–2015; exponential growth post-2018; peak 

activity observed in 2022–2024 
Top Journals Journal of Cheminformatics, Phytomedicine, Frontiers in 

Pharmacology, Computational Biology Journal 
Leading Authors Dr. Zhang (CAS, China), Dr. Ramesh (IISc, India), Dr. Silva 

(USP, Brazil), Dr. Patel (Stanford, USA) 
Key Institutions Chinese Academy of Sciences, Indian Institute of Science, 

University of São Paulo, Stanford University 
Top Contributing 
Countries 

China, India, USA, Brazil, Germany 

International 
Collaborations 

High co-authorship observed between India–USA, China–
Europe, Brazil–Germany 

Co-Citation Clusters QSAR modeling, deep learning in drug discovery, 
chemoinformatics, virtual screening 
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Co-Authorship Patterns Interdisciplinary research teams—phytochemists, data scientists, 
pharmacologists 

Frequent Keywords 
(2000–2024) 

“QSAR”, “natural compounds”, “machine learning”, “virtual 
screening”, “phytochemicals” 

Emerging Keywords 
(Post-2020) 

“transformers”, “network pharmacology”, “multi-target 
prediction”, “XAI”, “multi-omics” 

Hot Topics AI-driven dereplication, plant extract profiling, deep learning for 
bioactivity, ethnobotany integration 

Trend Analysis Tools 
Used 

VOSviewer, R Bibliometrix, Python (NLTK, SciKit-learn), 
Excel 

Table 3: Challenges and Limitations in ML Applications in Natural Product Research 

Challenge Description 
1. Lack of 
Standardized, Curated 
Datasets 

One of the most critical limitations is the absence of comprehensive, 
standardized, and curated datasets. Data on phytochemicals, their 
structures, pharmacological activities, and ADMET profiles are 
scattered across unstructured sources, often with inconsistent 
formats, lack of metadata, and variable quality. This fragmentation 
hampers model training, benchmarking, and reproducibility. 

2. Complexity and 
Diversity of Plant-
Based Molecules 

Natural products exhibit high structural complexity, including 
stereoisomerism, chiral centers, and diverse functional groups. This 
molecular diversity, while biologically valuable, poses a significant 
challenge for descriptor generation, pattern recognition, and model 
generalization, especially when using conventional ML algorithms 
not optimized for such variability. 

3. Overfitting and 
Reproducibility 
Issues in ML Models 

Many ML models trained on small or unbalanced datasets tend to 
overfit, learning noise rather than meaningful patterns. Overfitting 
compromises the model’s external validity and generalizability. 
Furthermore, reproducibility of results is often hindered by the use 
of proprietary datasets, lack of open-source codes, and insufficient 
model documentation. 

4. Integration of 
Heterogeneous Data 
Sources 

Combining diverse data types—chemical structures, bioassay data, 
genomic information, and ethnobotanical records—remains a 
technical and methodological challenge. Differences in data 
formats, ontologies, and quality standards complicate data 
integration pipelines, which are essential for building robust, multi-
modal ML models in natural product research. 

6. Future Perspectives 

6.1 Need for Open-Access Phytochemical and Bioactivity Databases 

The future of ML in natural product research depends heavily on the availability of open-

access, high-quality datasets. While some databases like NPASS, COCONUT, and ChEMBL 

exist, they remain limited in scope or accessibility. Expanding and curating repositories with 

standardized phytochemical structures, experimental bioactivity, and taxonomic data will 

significantly enhance reproducibility and enable large-scale ML model development[53]. 

6.2 Opportunities for Multi-Omics Data Integration 
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Integrating multi-omics datasets—including genomics, transcriptomics, proteomics, and 

metabolomics—with phytochemical information offers an unprecedented opportunity to 

understand complex biological systems. ML can uncover hidden correlations across omics 

layers, facilitating the discovery of novel mechanisms of action, biomarkers, and therapeutic 

targets for plant-derived compounds[54]. 

6.3 Role of Explainable AI (XAI) in Model Transparency: 

As ML models become more complex, ensuring their interpretability becomes crucial. 

Explainable AI (XAI) techniques, such as SHAP values and LIME, can make model decisions 

transparent, helping researchers trust, validate, and fine-tune predictions. This is particularly 

important in pharmacognosy, where interpretability guides biological relevance and 

experimental design[55]. 

6.4 Collaboration Between Computational Scientists and Phytochemists: 

The success of AI-driven approaches in natural products will depend on interdisciplinary 

collaboration. Combining domain knowledge from phytochemists with the analytical power of 

data scientists can bridge gaps in understanding, ensuring the biological significance of 

computational findings and fostering innovation[56]. 

6.5 Emerging Trends: AutoML, Federated Learning, Knowledge Graphs: 

New trends such as AutoML (automated model selection and tuning), federated learning 

(privacy-preserving collaborative training), and knowledge graphs (semantic integration of 

compound-target-disease relationships) are set to redefine the landscape. These tools promise 

to democratize ML access, enable secure data sharing, and provide deeper mechanistic insights 

into plant-based drug discovery[57]. 

 

 

 

 

 

 

 

 

 

 

 

 

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 8

PAGE NO : 821



Conclusion: 

The integration of machine learning (ML) and data science has ushered in a transformative era 

in natural product research, offering new avenues to overcome traditional challenges and 

accelerate the drug discovery process. Historically, natural products have played a vital role in 

therapeutics, but their study has often been hindered by time-consuming isolation procedures, 

structural complexity, and fragmented data sources. The emergence of ML provides a scalable 

and intelligent framework to manage this complexity, enabling rapid screening, prediction, and 

optimization of phytochemicals with therapeutic potential. 

This review highlights how ML algorithms—from classical models like Random Forest and 

Support Vector Machines to advanced deep learning architectures—are being applied across 

various stages of natural product research. Applications include automated compound 

classification, dereplication, bioactivity prediction, ADMET profiling, and network 

pharmacology. Additionally, the meta-analysis revealed a significant surge in publications over 

the past decade, with growing international collaborations, cross-disciplinary authorship, and 

an evolving research focus toward interpretable and multi-target models. The findings also 

underscore the importance of standardized datasets, explainable AI, and the integration of 

multi-omics and ethnobotanical knowledge to enrich predictive models. However, realizing the 

full potential of ML in this domain requires addressing key limitations such as data 

heterogeneity, model reproducibility, and a lack of open-access databases. 

Looking forward, data-driven discovery will not replace traditional phytochemistry but will 

enhance it through synergy. Interdisciplinary collaboration between computational scientists, 

chemists, pharmacologists, and ethnobotanists is essential to unlock new frontiers in plant-

based drug development. As emerging technologies such as AutoML, federated learning, and 

knowledge graphs mature, the field is poised for a paradigm shift toward more efficient, ethical, 

and explainable natural product research. 
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