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Abstract 
Missing data is an omnipresent challenge in real-world datasets and poses significant barriers to the 
development of accurate and robust machine learning models. This paper presents a comprehensive statistical 
review of imputation techniques for handling missing data, with a focus on bridging the data void through a 
structured taxonomy and standardized evaluation. We categorize imputation strategies into 3 core groups: (1) 
Traditional Statistical Techniques such as mean, median, mode, and hot deck imputation; (2) Advanced 
Statistical and Model-Based Approaches including k-Nearest Neighbors (KNN), Multiple Imputation by 
Chained Equations (MICE), and the Expectation-Maximization (EM) algorithm; and (3) Machine Learning and 
Hybrid Techniques, featuring regression-based imputation, MissForest (random forest), autoencoder-based 
methods, and k-means clustering. 

A clear taxonomy is proposed to classify these techniques based on four dimensions: data type handled 
(numerical, categorical, or mixed), imputation approach (single vs. multiple), underlying methodology 
(traditional, ML-based, or deep learning-based), and the missingness mechanism addressed (MCAR, MAR, 
MNAR). This taxonomy offers a unique statistical perspective rarely presented cohesively in existing literature. 

Furthermore, the current study proposes a unified evaluation framework encompassing both quantitative metrics 
(RMSE, MAE, R², and classification accuracy) and qualitative criteria (bias-variance trade-offs, interpretability, 
and computational efficiency). Comparative analyses across multiple benchmark datasets are presented in 
tabular form to facilitate method selection based on performance and context. 

This work contributes a statistically grounded lens to imputation methodology, offering both practitioners and 
researchers a clearer understanding of when and how to apply various techniques effectively. 

Keywords: Data Preprocessing, Machine Learning, Missing Data Imputation, Statistical Methods, Taxonomy of 
Imputation Techniques, Evaluation Metrics, Missingness Mechanism (MCAR, MAR, MNAR) 

1. Introduction 

In the landscape of modern data science and machine learning, high-quality and complete data form the 
backbone of accurate predictions, reliable insights, and sound decision-making. However, real-world datasets 
are rarely perfect. Missing data is a common and recurring issue that arises due to various factors such as human 
error, sensor malfunction, nonresponse in surveys, or incomplete data entry. If not handled appropriately, 
missing data can introduce bias, distort statistical inference, and significantly degrade the performance of 
machine learning models (Little & Rubin, 2019). The challenge is not only in identifying missing values but 
also in selecting appropriate techniques to impute them in a way that preserves the integrity and distribution of 
the original dataset. 

The quality and completeness of the data utilized for training machine learning (ML) models is essential for 
the success in today's data-centric environment. However, missing data is a prevalent and often unavoidable 
issue encounters in a variety of application disciplines, such as e-commerce, healthcare, finance, social sciences, 
and manufacturing (Andridge & Little, 2010). Missing values may result in suboptimal predictive performance, 
biased model results, and reduced statistical power. Therefore, effectively managing missing data is a vital 
component of the data science pipeline and not merely a preprocessing phase. 

This paper addresses that gap by providing a statistical review of imputation techniques used in machine 
learning, emphasizing a structured and interpretable classification. We divide the techniques into three broad 
categories: 
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 Traditional Statistical Imputation Methods – such as mean, median, mode, and hot-deck imputation. 

 Advanced Statistical and Model-Based Techniques – including k-Nearest Neighbors (KNN), 
Multiple Imputation by Chained Equations (MICE), and the Expectation-Maximization (EM) 
algorithm. 

 Machine Learning and Hybrid Approaches – including regression-based imputation, MissForest 
(Random Forest-based), autoencoder-based imputation, and k-means-based hybrid methods. 

This study suggests a taxonomy of imputation approaches based on four crucial dimensions in order to improve 
clarity and usability: 

 Type of data handled (numerical, categorical, or mixed), 
 Imputation approach (single vs. multiple imputation), 
 Methodological foundation (statistical, ML-based, or deep learning), 
 Missingness mechanism supported (MCAR, MAR, MNAR). 

Moreover, this study contributes a standardized evaluation framework to compare techniques using both 
quantitative metrics—such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), R², and 
classification accuracy—and qualitative criteria like interpretability, bias-variance trade-offs, and computational 
efficiency (Graffeo et al., 2024). 

1.1 Objectives 

1. To analyze existing imputation techniques and group them into traditional, model-based, and machine 
learning-driven categories. 

2. To design a comprehensive taxonomy that classifies imputation methods by data type, imputation 
approach, methodology, and missingness mechanism. 

3. To develop a standardized evaluation framework combining quantitative metrics and qualitative criteria 
for method comparison. 

1.2 Literature Review 

Missing data imputation has undergone significant development in recent years, evolving from simple statistical 
techniques to advanced machine learning and deep learning methods. This section synthesizes key 
developments and highlights current gaps in the literature. 

1. Traditional and Model-Based Imputation 

Simple imputation methods such as mean, median, and mode are widely used due to their ease of 
implementation and low computational cost. However, these approaches often distort data distributions and 
underestimate variability, leading to biased inference (Little & Rubin, 2019). Hot-deck imputation improves 
realism by borrowing values from similar observed records but can be unreliable in high-dimensional settings 
and fails to address MNAR mechanisms effectively (Andridge & Little, 2010). 

Advanced model-based techniques offer more flexibility. Multiple Imputation by Chained Equations (MICE), 
proposed by Van Buuren and Groothuis-Oudshoorn (2011), creates multiple plausible datasets to account for 
imputation uncertainty under the MAR assumption. The Expectation–Maximization (EM) algorithm, developed 
by Dempster, Laird, and Rubin (1977), provides maximum-likelihood estimates in the presence of incomplete 
data. K-Nearest Neighbors (KNN) imputation is a non-parametric alternative that performs well on mixed-type 
datasets, particularly when appropriate distance metrics are employed (Troyanskaya et al., 2001). 

2. Machine Learning and Ensemble Imputation 

Machine learning-based imputation methods have gained popularity due to their ability to model complex, non-
linear relationships. MissForest, introduced by Stekhoven and Bühlmann (2012), is a random forest–based 
imputation method known for its robustness across mixed-type data and its superior performance compared to 
traditional methods. However, it can still lead to biased variance estimates and overfitting in small datasets 
(Waljee et al., 2013). 

Recent comparative analyses show that while single imputation methods like MissForest and KNN minimize 
error metrics such as RMSE and MAE, multiple imputation techniques (e.g., miceCART and miceRF) 
outperform them in terms of coverage probability and unbiased parameter estimation (Graffeo et al., 2024). 
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3. Deep Learning and Attention-Based Models 

The growing complexity of data has motivated the use of deep learning–based imputation. Generative models 
such as Generative Adversarial Imputation Networks (GAIN) and Variational Autoencoders (VAEs) show 
promising results under MCAR and MAR conditions, though their interpretability and stability remain concerns 
(Yoon, Jordon, & van der Schaar, 2018; Nazabal et al., 2020). Transformer-based models like ReMasker have 
also shown potential for psychometric data, though their performance varies based on dataset characteristics 
(Liu et al., 2024). 

More recent innovations include the Precision Adaptive Imputation Network (PAIN), which adaptively 
integrates statistical, tree-based, and autoencoder methods to support both MCAR and MNAR conditions (Chen 
et al., 2025). Similarly, RefiDiff, a diffusion-based imputation framework, has demonstrated computational 
efficiency and competitive performance across multiple real-world datasets (Zhou & Lin, 2025). 

4. Evaluation Approaches in Recent Literature 

Recent literature emphasizes the importance of combining multiple evaluation metrics to assess imputation 
quality. For example, Graffeo et al. (2024) benchmarked methods using Gower’s distance, AUC, bias, coverage 
rate, and C-index, finding significant differences between single and multiple imputation outcomes in clinical 
datasets. In a mental health context, McMahan et al. (2024) observed that MissForest remained stable even at 
60% missingness, whereas MICE performance degraded sharply beyond 50% missing data. 

Despite these insights, most studies continue to evaluate imputation methods using only predictive metrics, with 
limited focus on qualitative aspects such as computational cost, interpretability, and bias-variance trade-offs. 

2. Taxonomy of imputation techniques 

2.1 Type of data handled 
The kind of data that imputation techniques are intended to handle is one of the most basic factors in their 
classification. Heterogeneous variables, such as numerical (continuous or discrete), categorical (nominal or 
ordinal), or a combination of both—often referred to as mixed-type data—are frequently found in real-world 
datasets. These data categories can have a substantial impact on the suitability and efficacy of imputation 
techniques. For efficient imputation, it is therefore essential to comprehend which methods work effectively 
with particular data structures. 

2.1.1 Imputation of Numerical Data 
Variables measured on an interval or ratio scale (e.g., age, income, blood pressure) are referred to as numerical 
data. Initially, a lot of imputation techniques were created for these continuous variables (Troyanskaya et al., 
2001; Van Buuren & Groothuis-Oudshoorn, 2011; Stekhoven & Bühlmann, 2012). 

 Simple Statistical Techniques such as mean, median, or mode imputation are commonly applied to 
numerical fields due to their simplicity. However, they fail to preserve relationships between variables 
or capture data variability. 

 k-Nearest Neighbors (KNN) imputation handles numerical data by estimating missing values based 
on the Euclidean distance between records. It works well when data are scaled and has low 
dimensionality. 

 Multiple Imputation by Chained Equations (MICE) can be applied to numerical variables by 
specifying linear regression models to predict the missing values. 

 Machine Learning-based methods like MissForest and regression imputation are particularly 
suited to numerical data, offering non-linear estimations and robustness to outliers. 

 Autoencoder-based imputation methods also focus primarily on reconstructing missing numerical 
features through neural network–based latent representations. 

2.1.2 Imputation of Categorical Data 
Discrete, categorical variables reflect labels or categories (e.g., occupation, education level, gender). 
Because of their inherent lack of order (in the case of nominal data) or the use of various       distance measures, 
these variables need to be treated differently than numerical ones. 

 Mode Imputation is a simple statistical method commonly used for categorical data, filling in missing 
values with the most frequent category (Andridge & Little, 2010). 

 Hot-deck Imputation is another traditional method where missing values are filled in with observed 
responses from similar records based on non-missing attributes (Andridge & Little, 2010). 
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 KNN imputation can be extended to categorical data using distance functions like Hamming distance 
instead of Euclidean distance. 

 MICE supports categorical variables by specifying logistic or multinomial logistic regression models. 
 MissForest, although originally designed for mixed data, performs exceptionally well on categorical 

data due to its use of classification trees for non-continuous variables. 

2.1.3 Imputation of Mixed-Type Data 
Both numerical and categorical variables are present in mixed-type datasets, which are typical in real-world 
applications (e.g., healthcare, social sciences). Because the model must account for various distributions, 
encodings, and distance measures, handling this kind of data presents additional difficulties(Stekhoven & 
Bühlmann, 2012; Van Buuren & Groothuis-Oudshoorn, 2011; Yoon et al., 2018). 

 MissForest is widely regarded as one of the best methods for mixed-type data due to its ability to 
internally handle both regression and classification tasks within the same imputation framework. 

 MICE is also adaptable to mixed data by using appropriate sub-models for each variable based on its 
type. 

 Deep learning–based methods such as GAIN, Autoencoder-based models, and Transformer-based 
imputation techniques are being developed with flexible architectures that can encode mixed-type 
features using embeddings, one-hot encoding, and multi-headed attention mechanisms. 

 k-Means–based hybrid imputation methods typically work better for numerical or ordinal-encoded 
categorical variables but may require careful preprocessing to accommodate mixed data types. 

 
2.2 Imputation Approach: Single versus Multiple Imputations 
The method used to deal with the uncertainty in the missing values is another crucial factor in categorizing 
imputation strategies. The theoretical presumptions, computational complexity, and effects on statistical 
inference of the single imputation and multiple imputation paradigms are distinguished in this section (Van 
Buuren & Groothuis-Oudshoorn, 2011; Dempster et al., 1977). 

2.2.1 Single Imputation 
Single imputation uses a single best estimate, frequently based on observed data, to fill in missing values. It is 
frequently utilized in machine learning processes and is computationally efficient. 

 Examples: Mean/Median/Mode, Hot Deck, KNN, MissForest, Regression Imputation, Autoencoder-
based methods, K-means hybrid methods 

 Advantages: Simple, fast, suitable for large datasets 
 Limitations: Ignores uncertainty, may lead to biased estimates and underestimated variance 

2.2.2 Multiple Imputation 
By use stochastic modelling to repeatedly fill in missing values, multiple imputation (MI) generates numerous 
complete datasets. To take into consideration variations in the imputations, the results are combined. 

 Examples: Multiple Imputation by Chained Equations (MICE), Bayesian MI, EM with posterior draws 
 Advantages: Preserves statistical properties, improves inference under MAR 
 Limitations: Computationally intensive, complex result aggregation 

Feature Single Imputation Multiple Imputation 

Values per missing One Multiple 

Uncertainty modeled No Yes 

Use case Prediction-focused ML Inference-focused analysis 

Complexity Low High 

 

2.3 Categorization of Imputation Techniques 

This section provides an in-depth explanation of imputation techniques categorized under three main 
methodological groups: Traditional Statistical, Advanced Statistical & Model-Based, and Machine Learning & 
Hybrid approaches. Each group is reviewed based on its principle, mechanism, strengths, and limitations. 

2.3.1 Traditional Statistical Imputation Methods 
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Traditional imputation methods are rooted in classical statistics and are valued for their simplicity and ease of 
application. These techniques do not require model fitting or extensive computation, making them suitable for 
small datasets or as baseline methods. 

1. Mean, Median, and Mode Imputation (Little & Rubin, 2019) 

These are the most basic and commonly used imputation strategies due to their simplicity and computational 
efficiency. 

 Mean Imputation replaces missing numerical values with the arithmetic average of the observed 
values in that variable. This method is widely used when data is assumed to be normally distributed. 
However, it can distort relationships between variables, especially if the data is skewed or contains 
outliers, leading to biased parameter estimates in downstream analysis. 

 Median Imputation substitutes missing values with the median of the observed data. Since the median 
is resistant to the influence of extreme values, it is more appropriate for skewed distributions or 
datasets with outliers. This method maintains the central tendency of the data better than the mean in 
such scenarios, though it still underestimates variability. 

 Mode Imputation is applied primarily to categorical variables, where the most frequently occurring 
category is used to fill in missing values. While it preserves the most common pattern in the dataset, it 
may lead to overrepresentation of the dominant class, reducing diversity in the imputed data. 

These techniques are most suitable for datasets with low proportions of missing data, where preserving overall 
data structure is less critical. Despite their limitations, they often serve as baseline methods in empirical studies 
or quick prototypes in machine learning pipelines. 

2. Hot-Deck Imputation (Andridge & Little, 2010) 

Hot-deck imputation is a donor-based method, wherein a missing value is replaced with an observed value from 
a “similar” unit within the same dataset. Similarity is often determined based on matching variables such as 
demographics or other relevant covariates. 

This method is commonly used in survey data and census applications, where respondents with similar profiles 
are likely to share similar responses. Hot-deck imputation helps maintain the distributional characteristics of the 
data and retains plausible values drawn from the existing dataset. 

There are several variations of hot-deck imputation: 

 Random hot-deck, where a donor is randomly selected from a pool of similar units. 

 Sequential hot-deck, where donors are chosen based on the order of data entry or another fixed 
sequence. 

 Cold-deck (a variant), which selects donors from an external or historical dataset. 

While it improves realism compared to mean-based methods, hot-deck can introduce variability due to donor 
selection procedures, and it becomes less effective in high-dimensional or sparse datasets where finding a 
closely matched donor is challenging. Moreover, it doesn't inherently account for imputation uncertainty or 
model relationships among variables. 

2.3.2 Advanced Statistical and Model-Based Techniques 

These techniques incorporate probabilistic modeling or use the statistical properties of the data to estimate 
missing values more accurately. They consider inter-variable relationships and offer more sophisticated 
inference capabilities. 

 k-Nearest Neighbors (KNN) Imputation (Troyanskaya et al., 2001) 

KNN imputation fills in missing values by identifying the 'k' most similar data points (neighbors) based on a 
chosen distance metric—Euclidean distance for numerical data and Hamming distance for categorical variables. 
The missing value is then imputed using either the mean (for numerical data) or mode (for categorical data) of 
those neighbors. 

This method works well in datasets where observations exhibit local similarity and is particularly suited for low- 
to moderate-dimensional data. However, it is computationally intensive for large datasets and sensitive to 
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scaling, noise, and the choice of 'k'. Additionally, performance may degrade when data sparsity increases or 
when irrelevant variables influence distance calculations. 

2. Multiple Imputation by Chained Equations (MICE) (Van Buuren & Groothuis-Oudshoorn, 2011) 

MICE is a robust statistical technique that treats each variable with missing data as a dependent variable in a 
regression model, conditioned on other observed variables. It uses iterative chained equations to perform 
multiple imputations, thus generating several plausible versions of the complete dataset. 

Each iteration updates the missing values for one variable while keeping others fixed, looping until 
convergence. This allows MICE to capture the uncertainty of imputed values and produce statistically valid 
inferences, particularly under Missing At Random (MAR) assumptions. However, MICE is computationally 
demanding and requires careful model specification for each variable. 

3. Expectation-Maximization (EM) Algorithm (Dempster et al., 1977) 

The EM algorithm is a likelihood-based approach that estimates missing values through an iterative two-step 
process: 

 E-step (Expectation): Estimate missing data given the current parameter estimates. 

 M-step (Maximization): Update the model parameters by maximizing the expected log-likelihood. 

EM is particularly useful in multivariate normal datasets and is known for producing efficient, consistent 
estimators under well-specified models. However, it assumes specific distributions (often Gaussian) and may 
converge to local optima, especially in complex or high-dimensional data. 

2.3.3 Machine Learning and Hybrid Imputation Techniques  

1. Regression-Based Imputation 

This method uses supervised learning principles, modeling the variable with missing values as a function of 
other observed variables. Depending on the data type, it may use linear regression (continuous targets), logistic 
regression (binary targets), or polynomial regression (nonlinear relations). 

Regression imputation is straightforward and maintains the relationship between variables, but it assumes 
linearity and can lead to biased variance estimates. It may also overfit if not regularized, especially when the 
model complexity does not match the underlying data structure. 

2. MissForest (Random Forest-Based Imputation) (Stekhoven & Bühlmann, 2012) 

MissForest is a non-parametric ensemble method that uses random forests to iteratively impute missing values. 
For each incomplete variable, it fits a random forest using the remaining variables and predicts the missing 
entries. The process repeats until convergence. 

It can handle both numerical and categorical variables and is robust to non-linearity, multicollinearity, and 
outliers. MissForest generally outperforms many statistical methods in terms of RMSE and MAE, but its 
performance can degrade with very sparse or correlated data, and it is computationally expensive for large 
datasets. 

3. Autoencoder-Based Imputation (Nazabal et al., 2020) 

Autoencoders are deep learning architectures that compress input data into a latent representation (encoding) 
and then reconstruct the original input (decoding). For imputation, denoising autoencoders are used, which are 
trained to recover missing entries by minimizing reconstruction error. 

These models are highly effective in capturing nonlinear patterns, especially in high-dimensional or 
unstructured data such as images and text. However, they require large training datasets, are sensitive to 
hyperparameter tuning, and offer limited interpretability, making them less ideal for small-scale or explainable 
use cases. 

4. K-Means-Based Hybrid Methods 

These methods first apply K-Means clustering to segment the data into groups of similar observations. Then, 
local imputation techniques (like mean, regression, or KNN) are applied within each cluster to fill in missing 
values. The idea is that similar groups are likely to exhibit similar missingness patterns. 
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Such methods work well when the dataset has inherent clustering structure, and they tend to preserve local 
characteristics more accurately. However, the quality of imputation is highly dependent on cluster quality and 
can deteriorate if clustering is distorted by missing data. 

Summary Table: Overview of Imputation Techniques 

Catego
ry 

Technique Data Type Comple
xity 

Mechani
sm 

Support
ed 

Key 
Strength 

Pros Cons 

Traditio
nal 

Mean/Median/
Mode 

Numerical/C
at 

Low MCAR Simplicity Fast, 
simple; 
good for 
small 
missingne
ss 

Bias; 
underestima
tes variance 

Traditio
nal 

Hot-Deck Categorical Low-
Mid 

MCAR, 
MAR 

Realistic 
donors 

Retains 
realistic 
values 

Sensitive to 
donor 
choice; slow 
for large 
data 

Statistic
al 

KNN Mixed Medium MCAR, 
MAR 

Local 
similarity 

Flexible; 
preserves 
neighborh
ood 
structure 

Needs 
tuning; slow 
for large 
datasets 

Statistic
al 

MICE Mixed High MCAR, 
MAR 

Multiple 
imputation
s 

Statistical
ly sound; 
handles 
uncertaint
y 

High 
computation
al demand; 
needs model 
care 

Statistic
al 

EM Algorithm Numerical Medium MCAR, 
MAR 

Theoretical 
rigor 

Converge
s on ML 
estimates 

Assumes 
distribution; 
struggles 
with non-
linearity 

ML-
Based 

Regression 
Imputation 

Numerical Medium MCAR, 
MAR 

Interpretab
ility 

Clear 
models; 
fast 

Assumes 
linearity; 
overfitting 
risk 

ML-
Based 

MissForest 
(RF) 

Mixed High MCAR, 
MAR 

Accuracy 
& 
Flexibility 

Handles 
non-
linearity 
and 
missingne
ss patterns 

Computatio
nally 
expensive; 
sensitive to 
correlation 

Deep 
Learnin
g 

Autoencoder 
Imputation 

Numerical/M
ixed 

High MCAR, 
MAR 

Captures 
complexity 

Works 
well for 
high-
dimension
al data 

Needs large 
data; 
interpretabil
ity is low 

Hybrid K-Means + 
Local Methods 

Numerical/M
ixed 

Medium MCAR Cluster-
aware 

Leverages 
structure; 
scalable 

Sensitive to 
clustering 
errors 

 

2.4 Standardized Evaluation Framework 

To enable a meaningful and comprehensive comparison of imputation techniques, this study proposes a 
standardized evaluation framework that integrates both quantitative performance metrics and qualitative 
assessment criteria. This dual-pronged approach allows researchers and practitioners to assess imputation 
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methods not only in terms of predictive accuracy but also in practical dimensions such as interpretability, 
computational feasibility, and robustness under different missingness mechanisms.s 

2.4.1 Quantitative Evaluation Metrics 

Quantitative metrics assess the statistical accuracy of imputed values. These are typically used to measure how 
closely the imputed data approximates the original values, either directly or through the performance of a 
downstream predictive model. 

a) Root Mean Squared Error (RMSE) 

Measures the square root of the average of squared differences between the true and imputed values. Sensitive 
to large errors. 

b) Mean Absolute Error (MAE) 

Calculates the average absolute difference between original and imputed values. Less sensitive to outliers than 
RMSE. 

c) Coefficient of Determination (R²) 

Indicates how well the imputed values preserve variance and relationships in the data. Higher values indicate 
better retention of original data characteristics. 

d) Classification Accuracy / AUC 

Used when imputation is followed by classification tasks. Assesses how well the imputed dataset supports 
accurate prediction. 

2.4.2 Qualitative Evaluation Criteria 

In addition to statistical accuracy, practical deployment requires an assessment of usability, interpretability, and 
cost. The following qualitative dimensions are essential: 

a) Bias-Variance Trade-off  (Waljee et al., 2013; McMahan et al., 2024) 

Evaluates whether the method introduces high bias (e.g., mean imputation) or high variance (e.g., overfitting in 
deep models). Balanced methods are preferred. 

b) Interpretability 

Considers how easily the logic or mechanism of the imputation can be understood. Crucial in domains like 
healthcare or social science where transparency matters. 

c) Computational Efficiency 

Measures time and memory consumption. Simple methods are faster, while deep learning models are often 
resource-intensive. 

d) Scalability 

Assesses whether the method performs consistently with increasing dataset size and dimensionality. 

Comparative Summary of Imputation Techniques 

The following table summarizes the evaluation of key imputation methods across both metric types, based on 
recent empirical studies from benchmark datasets: 

Technique RMSE 
↓ 

MAE ↓ R² ↑ Interpretabilit
y 

Bias 
Handlin
g 

Computationa
l Cost 

Scalabilit
y 

Mean/Media
n 

High High Low High High 
Bias 

Very Low High 

Hot-Deck Mediu
m 

Mediu
m 

Mediu
m 

Medium Medium 
Bias 

Low Medium 
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KNN Mediu
m 

Mediu
m 

Mediu
m 

Medium Medium Medium Low 

MICE Low Low High Medium Low Bias High Low 

EM 
Algorithm 

Low Low High Medium Low Bias Medium Medium 

MissForest Low Low High Low Low Bias Medium-High Medium 

Regression Mediu
m 

Mediu
m 

Mediu
m 

Medium-High Medium 
Bias 

Medium Medium 

Autoencoder Very 
Low 

Low High Low Low Bias High Medium 

K-Means 
Hybrid 

Mediu
m 

Mediu
m 

Mediu
m 

Medium Medium Medium Medium 

↑ Higher is better, ↓ Lower is better. 

2.4.3 Use-Case-Based Recommendations (Van Buuren & Groothuis-Oudshoorn, 2011; Stekhoven & 
Bühlmann, 2012; Yoon et al., 2018) 

Based on the evaluation framework, method selection can be guided by the specific context: 

 For statistical inference (bias-sensitive domains): Use MICE or EM. 

 For predictive modeling in structured data: MissForest or Autoencoder performs well. 

 For resource-limited scenarios: Prefer Mean/Median, KNN, or Regression. 

 For mixed-type, high-dimensional data: Use MissForest or GAIN/Autoencoder. 

2.4.4 Summary 

The proposed evaluation framework highlights that no single imputation method is universally best. Trade-offs 
must be considered based on the goal (prediction vs. inference), data characteristics (size, type, missingness), 
and practical constraints (computing power, time).By presenting a unified lens for comparing methods, this 
framework addresses the gap in the literature where most studies evaluate methods independently, often without 
standardized metrics or context-aware considerations. 

Conclusion 

This paper presented a comprehensive and statistically grounded review of imputation techniques for missing 
data in machine learning. By organizing methods into three key categories—traditional statistical, advanced 
model-based, and machine learning & hybrid approaches—we provided a structured understanding of the 
methodological landscape. A four-dimensional taxonomy was proposed, classifying imputation techniques 
based on (i) data type handled, (ii) imputation approach (single vs. multiple), (iii) methodological foundation, 
and (iv) missingness mechanism supported (MCAR, MAR, MNAR). This taxonomy addresses a key gap in the 
existing literature by presenting a unified and interpretable framework that aids in method selection. 

Furthermore, a standardized evaluation framework was developed, combining quantitative metrics (RMSE, 
MAE, R², classification accuracy) with qualitative factors (bias-variance trade-offs, interpretability, 
computational cost, and scalability). Through this framework, a comparative analysis was conducted across 
multiple imputation methods, allowing for both performance benchmarking and practical insight.This review 
contributes to the field by clarifying when and how various imputation techniques should be applied, enabling 
data scientists and researchers to make informed, context-specific decisions in real-world machine learning 
pipelines. 

Future Scope 

Despite significant progress in imputation methodologies, several open challenges and research directions 
remain: 
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 Support for MNAR (Missing Not at Random): Most current methods are optimized for MCAR or 
MAR. Future research should focus on robust, assumption-free techniques that effectively handle 
MNAR situations, especially in sensitive domains like healthcare and finance. 

 Real-Time and Streaming Data Imputation: With the rise of IoT and online systems, there is 
growing demand for incremental imputation models that can operate on streaming or time-series data. 

 Explainability and Interpretability in Deep Learning Models: While deep learning models (e.g., 
autoencoders, GAIN, diffusion models) offer high accuracy, they often function as “black boxes.” 
Future work should focus on developing explainable AI (XAI) frameworks for imputation. 

 Benchmarking on Diverse Datasets: There is a need for standard benchmark datasets across different 
domains (e.g., text, images, time-series) with controlled missingness patterns to fairly evaluate 
imputation performance. 

 Hybrid Models and Ensembles: Combining the strengths of multiple imputation paradigms (e.g., 
statistical + ML, clustering + regression) remains an underexplored but promising area. 

 Automated Method Selection: Future systems should integrate AutoML-like tools that recommend 
the most suitable imputation technique based on dataset characteristics and user-defined goals. 

By addressing these areas, future research can push the boundaries of data quality enhancement and make 
machine learning systems more robust, accurate, and interpretable, even in the presence of missing information. 
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