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Abstract 

There is rapid increase in precision agriculture and the key aim of any developed farming program is to 

derive maximum value per square meter and at the same time ensuring long term sustainability. In line with 

the above description, our research project assigns the concept of Smart Crop Grid Planner, an online tool 

that would combine machine-learning models and on-farm data to provide a decision-maker with relevant 

and reliable information based on which one can make an agricultural decision. The user requires specifying 

the farm extent, soil ph, soil nutrients profile, irrigation potential, and the geographical coordinates in order 

to use the planner. The platform then divides the ground into a grid map and, assuming a multi-objective 

optimization approach, suggests in each grid cell which crop should be used given existing soil fertility, crop 

rotation constraints, the local weather conditions and current market rates. Soil, weather, and water data that 

is given in real time through application programming interfaces (APIs) guarantees that the recommendations 

can be applicable in various geographical areas. The end product map provides a graphical key in showing 

which crop has been recommended in each of the grids and comes along with prescriptive advice on the 

seeding rates, ratio of applying fertilizer and irrigation method to be applied on every location. This platform 

aims to improve the productivity and the environmental impacts of contemporary farming businesses by 

improving resources allocation, production predictions, and the adoption of the sustainable agriculture 

principles, especially in the districts that are data-scarce and where farming is more sensitive to climatic 

forces. 
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1. Introduction 

The main form of economic activity classified as cultivation of cash crops dominates across most of the 

developing economies with majority of the regions experiencing more than 70 percent of the economic 

activity. However, the farm cultures still remain which in most cases is a source of mismanagement of 

land, unsustainability and overuse of resources. At the same time, an increased climatic unpredictability, 

the rise in the rate of soil erosion, and the change in market requirements make the process of controlling 

agricultural production quite challenging. The modern agricultural industry should respond to those new 

challenges with data-driven and innovative technologies that would allow developing synthetic 

solutions to different problems. 

The smart crop grid planner works hand in hand on these needs. Instead of in-depth planning of the 

agricultural lands and maximizing the yield by using machine-learning algorithms, the platform is 

supported by artificial intelligence and has a graphical display of every needed detail to plan the works. 

The system allows overlapping of data on land area, soil type and pH, irrigation potential, geographic 

location and season and thus parcels the land into grids and employs multi objective optimization to 

come up with the most appropriate crops in the most effective way. As a result, there is integration of 

weather forecast, soil property parameters and APIs regarding water availability. Thus, results are 

delivered in real time and very site specific to the farmer. 
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It has a system that has optimized density of seeds, quantity of fertilizers, and irrigation needs per each 

square cell supplying sustainable farming plans. The findings will be provided in the form of an 

interactive map where the colour-coded crop zones make information instantly understandable. At the 

end, the goal is strategic, where the aim is to bridge the gap between agri-technology and small- or 

medium scale farmers on a user-friendly, technology driven, and space oriented platform which 

promotes precision agriculture, crop growth, and environmental sustainability. 

 

2. Literature Survey 

Kumar, Roy and Sharma [1] have proposed a CR system powered by machine-learning technique that 

is built upon soil characterization, climatic conditions and historical cultivation data to suggest the best 

crop to be sown. Their architecture utilizes the techniques of it and looks into the content of soil 

nutrients, pH, seasonal records, and weather forecasts using techniques such as Decision Tree and 

Random Forest and XGBoost to increase the agronomic performance. 

The API that Moreau, Lefevre, and Dubois [2] proposed was Weather API, oriented to agricultural use, 

which allows one to get the necessary climate indicators rainfall, humidity, and temperature in real time. 

Concurrently, Batjes and Hengl [3] also published SoilGrids, a collection of gridded soil information 

about the whole world, and therefore, offered precision agriculture in form of accurate descriptions of 

the soil properties, water content, and fertility. 

As exemplified by Fernandez, Liu, and Schmitz [4], land segmentation via satellite imagery was 

analyzed through the means of grid-based approach and with K-means clustering. Their results indicate 

a clear representation of the agricultural properties through the grid cells which are lastly streamlined 

through the use of linear programming to provide nuances to the land allocation processes in terms of 

recourse supply, irrigation potential and reasonable exerted demand in the market. 

Banerjee, Wang, and Verma [5] emphasize the leading importance of Explainable AI (XAI) in the 

sphere of agriculture. Helps them understand the AI models which drive crop forecasting and make it 

more transparent thus improving the transparency given to farmers and leading towards more trust and 

decision making. 

Systematically, Thomas, Raj, and Nair [6] found out the performance of the Variable Rate Seeding 

(VRS), which is a modern precision-farming approach to calibrating the density of planting with site-

specific conditions. Their results showed that VRS improved crop yields and efficiency of the resources 

through a unit by unit grid-based distribution of the seeds in accordance to real time data. 

Miller & Johnson [7] prove the effect of artificial intelligence on the modern agriculture by analyzing 

John Deere. Their analysis shows that: With smart systems in place, e.g. live dashboards and triggered 

alerts, farmers are able to inspect the conditions of their fields, and make evidence-based decisions 

based on a real-time analysis of quantitative data. 

Famonaut by Rao, Gupta, and Das [8] provide an API that has real-time information on the crop health 

and soil moisture. The research reveals that when these APIs are implemented in the farming 

mechanism, the farmers can use them to picture their fields as grids in colour and get usable notifications 

regarding requirements of irrigation and fertilization. 
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3. Proposed methodology 

The system will be an artificial intelligence powered tool that could assist farmers with making crop 

planning decisions supported by data. It divides agricultural lands into squared grid areas and then  

proposes crops to grow on the unit that should suit the local environment and agronomic requirements. In 

order to begin a user will input data into land size, soil type, pH level, irrigation capacity, location, and 

the season of the year. The platform uses real time APIs including ISRIC SoilGrids, Weenat, and 

Farmonaut to gather information on the soil nutrients, moisture and weather conditions. Then machine-

learning models, i.e., Random Forest and XGBoost will be used to make predictions as to which crop will 

be the most effective in each of the grid segments. 

The system turns to multi-objective optimization techniques like Linear Programming (LP), weighing soil 

health, crop rotation, water availability, and market value to recommend crops that balance yield and 

sustainability. Coupled with that, the platform gives grid-specific instructions on seed rate, fertilizer and 

irrigation. All the outcomes are displayed through interactive map color-coded, and Explainable AI tools 

such as SHAP or LIME are included, so the users would know the specifics of how the system came to 

its decisions. 

 

3.1 Proposed model diagram 

The proposed AI-Driven Grid-Based Crop Allocation grid-based crop allocation architecture is 

structured such that it will streamline crop planning since it will automate the decision-making processes 

via intelligent data analysis. A sequential workflow incorporates user input in combination with 

streamed real-time data, entwines the information with machine-learning estimations formed of 

streaming information, and ends with a multi-objective representation module. The combination results 

in very precise, sustainable, and tailored recommendation to each cluster of land grids as depicted in 

the diagram below: 
 

Figure 3.1.1 Flow of Proposed model 

 

 

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 8

PAGE NO : 262



 

 

 

3.2 Block diagram of ML module 

The machine learning module carries out the mathematical reasoning which converts the inputs into a reliable 

crop prediction. The block diagram of the functioning of the system is shown below. 

 

Figure 3.2.1 Model flow diagram of ML module 

The system will first accept the input parameters consisting of the soil type, amount of fertilizer, geographical 

location and available irrigation capacity besides the real time data that will be obtained through external APIs. 

Light preprocessing is being performed on such information and then the information is trained employing 

various available ML algorithms: Random Forest, Decision Tree, and XGBoost. Each of the algorithms is 

trained using historical agricultural data sets in order to provide a suitable score on crop suitability. Based on 

the developed models, their performance is tested using such parameters as accuracy, F1-score, mean absolute 

error, and the best model is chosen. They are used to make predictions that are fed to an optimization engine to 

place crops in grid-wise locations upon verification. Such stringent process eliminates demotion of the model 

output in terms of accuracy, interpretation, and sensitivity to local aspects. 

 

4. Mathematical Formulas 

Targeted architecture combines processes in machine-learning and crosses them with multi-objective 

optimization to combine the features of Random Forest and XGBoost processes with exact crop 

suggestions and grid partition land coverage. Equations of the system are the following: 

4.1. Crop Suitability Score Calculation (Regression Output) 

In this case, the suitability of a crop, c, in a grid, g is predicted using a regression: either Random Forest 

or XGBoost. 

Sg,c=f(Xg) 

Where: 

• Sg,c : Predicted suitability score of crop c in grid g 

• Xg : Feature vector for grid g (includes pH, NPK values, temperature, rainfall, etc.) 

• f: Trained machine learning model 
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4.2. Multi-Objective Linear Programming (Crop Allocation) 

To maximize productivity and profitability simultaneously with lower use of resources, a multi-

objective linear programming is implemented. 

Maximize: Z=g=1∑n 
c=1∑m(Yg,c⋅Pc) 

Subject to: 

• Land constraint: 

c=1∑m Yg,c=1, ∀g∈[1,n] 

• Water constraint: 

g=1∑n c=1∑m Yg,c⋅Wc≤Wtotal 

• Soil nutrient constraint (e.g., Nitrogen): 

Ng≥Nmin,c⋅Yg,c,∀g,c 

Where: 

• Yg,c∈{0,1}: Binary decision variable (1 if crop c is assigned to grid g, else 0) 

• Pc: Expected profit or market value of crop c 

• Wc: Water required for crop c 

• Ng: Available nitrogen level in grid g 

• Nmin,c: Minimum nitrogen required for crop c 

• Wtotal: Total available water for all grids 

 

5. Graphs 

5.1. Model Accuracy Comparison: 

 

Figure 5.1.1 Model metrics radar chart displaying Model accuracy comparison 
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In the analysis of the different machine-learning models that are to be taken as effective regarding crop 

suitability predictions, the reviewers used the overall accuracy. The results are unambiguous, the 

Random Forest classifier obtained the best score and received 91.8 %. The Decision Tree model, in  

comparison was able to come second with a percentage level of 86.5 %. Such difference in outcomes 

demonstrates that the ensemble methods, in this case, Random Forest can be defined as more stable and 

able to generalize on crop-recommendation tasks compared to individual decision trees. 

5.2. Predicted Crop Yield Distribution: 

 

Figure 5.2.1 Donut Chart Showing Predicted Yield per Crop 

The following chart is the estimation of the yield of particular crops according to the machine-learning 

models that were used in our study. Following these models, the highest contribution of Rice is expected 

to be at 33.3 percent followed by other crops on the list namely Wheat (26.7 percent), Maize (22.2 

percent), and Millet (17.8 percent). 

These predictions were made on the basis of the environmental conditions like nutrients, PH and 

moisture content of soil and climatic parameters like temperatures, and rains coupled with grid-related 

characteristics. This chart enables farmers to consult and know which crop will be most productive at a 

particular time on their farm land thus improving the decision making process that is associated with 

increased productivity and profitability. 

6. Experimental results 

The observation of the literature related to the demonstration of machine learning model deployment 

with agricultural applications and the use of AI-driven systems enables proving the potential of the 

Smart Crop Grid Planner. Overall views about key results of experiments are presented in the below 

table. 

 

System/Model Task Key Algorithms Performance 

Metric 

Best Value 

Crop 

Recommendation 

System 

Crop 

Recommendation 

Random Forest, 

SVM, Logistic 

Regression, 

Decision Tree, 

GNB 

Accuracy Up to 99% 

RFXG Ensemble Crop 

Recommendation 

Random Forest + 

XGBoost 

Accuracy, 10-

fold Cross-

Validation 

98%, 0.981 ± 

0.0119 

TCRM (Cloud-

based) 

Crop 

Recommendation 

RF, Extra Trees, 

Dense, Multi-head 

Attention 

Accuracy, 

Precision, Recall, 

F1 Score 

Accuracy: 

94%, F1: 

93.97% 
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Standalone 

Models 

Crop 

Recommendation 

RF, XGBoost, 

Extra Trees, MLP, 

DT, LR 

Precision, Recall, 

F1 Score 

Up to 96% 

(RF/XGB), 

MLP only 43% 

F1 

Forecasting 

Model 

Optimal Harvest 

Prediction 

Decision Tree R² Score 99% 

Crop Yield 

Prediction 

Yield Estimation LR, RF Regressor, 

LightGBM, DT 

Regressor 

Accuracy, R², 

MSE, MAE 

Accuracy: 

95.87%, R²: 

0.92, MSE: 

0.02 

Hybrid Model 

(E-Kisan) 

Crop Yield 

Prediction 

RF, LSTM, 

XGBoost 

R² (Yield 

Prediction) 

0.9827 

(Overall), 

0.9721 (Rice) 

Fertilizer 

Recommendation 

Nutrient 

Optimization 

Gradient Boosted 

Trees, XGBoost 

Accuracy, 

Precision 

Accuracy: 

99%, Precision: 

99.1% 

Smart Irrigation 

System 

Water 

Management 

Fuzzy Logic Water Savings, 

Calibration Rate 

61% Savings, 

66.23% Faster 

John Deere 

ExactEmerge™ 

Planting 

Efficiency 

AI Sensors, ML, 

GPS 

Planting 

Efficiency 

20% Higher 

 

7. Conclusion 

Artificial intelligence-based Smart Crop Grid Planner represents a brand new technological tool to have 

a real breakthrough in modern agrarian management. Using machine-learning algorithms and 

instantaneous input of environmental parameters, it makes weather, soil moisture, and the associated 

data actionable field plans. The device splits cultivated land into a grid mesh pattern and practically the 

best places to plant each crop are identified through multi-objective optimization to ensure the best 

turnout in terms of suitability and productivity. The use of Smart Crop Grid Planner also leads to 

improvement in the financial stewardship, cost-cutting on operating costs and soil preservation, thus 

achieving a balance between economic demand and environmental factors. 

In spite of these favourable properties, the Smart Crop Grid Planner has a number of issues that can be 

observed during its implementation. The most important are technical barriers, i.e., data quality, 

interoperability, and reliability of supportive infrastructure as well as socioeconomic ones, i.e., the 

digital divide, high initial capital demands, and reluctance of the agricultural producers caused by a lack 

of awareness or confidence in the use of technologies based on artificial intelligence. Eliminating these 

obstacles will require creation of strong data platforms, development of user friendly interfaces that 

could be understood and used by end users, and development of focused training programs to farmers. 

Favourable policy surroundings and economic encouragements towards its adoption will also play a 

vital role in its widespread auto adoption. With such additions of complementary measures, the AI-

Powered Smart Crop Grid Planner can be an instrument of change to redesign agricultural procedures 

in the future by focusing on resilience, productivity, and sustainability. 

 

8. Future enhancement 

At present, the Smart Crop Grid Planner, which is the advancement of precision agriculture, driven by 

AI, although it is a worthy breakthrough, does not lack limitations that should be evaluated 

systematically. The most important issues related to these are data quality and interoperation of systems. 

Strict schedule of validation, integration, and standardization should thus be exercised over a vast 

volume of heterogeneous sensors, platforms, and application programming interfaces (APIs) so that the 

planning agency would be able to maximize its area of coverage. At the same time, transitioning to  
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universal data formats would also help the effortless integration of various technologies across the field 

of agriculture and eventually contribute to the development of a more structured technological 

environment. 

The necessity to promote Explainable AI into the planner is also imminent such that its outcomes are 

executable and transparent to the final user. In addition, more up-to-date methods of optimization, 

already implemented in the system as multicriteria optimization, are suited well to capture dynamic 

crop rotation schemes and multi-year planning thus entailing longer-term soil health, pest resistance and 

market adaptability. A stronger collaboration of the planner with robotics and automation, especially 

tractor automation and drones equipped with the AI tools can reduce the amount of necessary labour 

and increase the efficiency of operations. Offensively predictive maintenance is also AI-enabled, 

capable of extending the service life of farm equipment and the reduction in shutdowns. The forecasting 

models of pest and diseases based on granular biological and climatic data can also be added to the 

existing architecture, with the interventions (timely and on-site) minimizing the use of chemicals. 

Additional developments and enhancements can potentially use blockchain technology and hence 

provide full transparency across the agricultural supply chain, an improved direct market place access 

of the farmers and greater traceability of the products. As per the bridge of the digital divide, low-cost, 

mobile-first edition of the planners should be warranted, which is designed with uncomplicated 

interfaces of the small and periphery farming communities. Moreover, it must incorporate the ability to 

carry out adaptive learning throughout the process by making the AI model constantly adapt to data 

related to the farm in question,That will improve personalization and accuracy as time goes on. Lastly, 

in order to address the upcoming issue arising out of climate change, the planner ought to incorporate 

options that enhance resilience to drought, optimal water use, and carbon-limiting activities. All these 

improvements will complement the Smart Crop Grid Planner as a sustainable, inclusive, and immortal 

system of sustainable agriculture. 
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