
CLASSICAL LINEAR PROGRAMMING TECHNIQUES IN MODERN AI:

A REVIEW OF BIG M AND TWO-PHASE METHODS

 Monika Sai Murari1,
1 Assistant Professor, Department of Statistics, St. Ann’s College for Women,

Mehdipatnam, Hyderabad, Telangana, India

ORCID: 0009-0006-4477-8801, +91 8501801452,

P. Deepika2,
2 Assistant Professor, Department of Statistics, St. Ann’s College for Women,

Mehdipatnam, Hyderabad, Telangana, India

+91 9640418792,

Abstract

Linear programming (LP) has long been a fundamental tool in optimization, with classical

methods such as the Big M and Two-Phase techniques playing key roles in solving constrained

problems. Although modern artificial intelligence (AI) typically relies on gradient-based and

heuristic algorithms, LP methods still offer practical advantages in specific areas where rules,

constraints, and interpretability are critical. This review explores the working principles of the

Big M and Two-Phase methods and highlights their relevance in AI applications such as rule-

based reasoning, feature selection, task scheduling, and hybrid symbolic-ML systems. By

comparing these classical techniques with modern optimization approaches, the paper outlines

their strengths, limitations, and suitable use cases. The review concludes by discussing the

potential for these LP methods to support the development of interpretable and constraint-aware

AI systems in the future.

Keywords: Linear Programming, Big M Method, Two Phase Method, Constraint Handling,

Artificial Intelligence

1. Introduction

1.1 The Need for Classical Optimization in AI

As artificial intelligence (AI) continues to evolve, the majority of optimization efforts have

shifted toward data-driven methods such as stochastic gradient descent (SGD), evolutionary

algorithms, swarm intelligence, and reinforcement learning. These techniques are well-suited for

training complex, high-dimensional models—such as deep neural networks—where closed-form

solutions are impractical and exact constraint satisfaction is not required. However, despite their

success in pattern recognition, recommendation systems, and autonomous agents, these modern

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 8

PAGE NO : 10

optimization tools often function as “black boxes,” making it difficult to impose hard constraints

or explain decision boundaries.

In contrast, many emerging AI applications demand structured, rule-based reasoning, hard

constraints, and explicitly interpretable outcomes. Domains such as legal-tech, healthcare

diagnostics, supply chain scheduling, and fairness-aware systems require strict compliance with

external rules and policies. For instance, an AI model used for loan approvals must respect anti-

discrimination laws, while a robotic system navigating a factory floor must stay within defined

operational zones. These are not merely optimization problems—they are constraint-satisfaction

problems, where the solution must meet clearly defined conditions without exception.

This growing need for constrained optimization has reignited interest in classical linear

programming (LP) techniques, especially in areas of AI where interpretability, rule enforcement,

or deterministic outcomes are crucial. In particular, the Big M method and Two-Phase method

offer reliable ways to handle equality and inequality constraints, model logical conditions, and

solve feasibility problems where standard machine learning optimizers struggle.

The Big M method introduces artificial variables with large penalty coefficients to enforce

constraints, allowing models to simulate logical “if-then” conditions within an LP framework.

The Two-Phase method first finds a feasible starting point (Phase I), then solves the actual

optimization problem (Phase II), ensuring that the model respects the constraint structure before

optimizing for performance. These techniques are highly suitable for AI subfields where

constraints are not negotiable, and where solutions must be explainable, reproducible, and

auditable.

Moreover, in low-data environments or rule-driven systems where training examples are limited

or not statistically representative, classical methods can provide robust and mathematically

grounded alternatives to data-heavy learning approaches. By formulating AI tasks as LP

problems with structured objective functions and bounded variables, developers can maintain full

control over the behavior of the model, something often lost in neural or evolutionary

architectures.

Ultimately, the resurgence of interest in classical optimization reflects a broader trend: a shift

from purely statistical modeling to hybrid systems that integrate learning with logic, rules, and

structure. In this context, Big M and Two-Phase methods remain powerful tools that complement

modern AI, enabling models that are not only intelligent but also accountable, interpretable, and

compliant with real-world constraints.

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 8

PAGE NO : 11

1.2 Why Big M and Two-Phase Methods?

The Big M method introduces large penalty constants to incorporate inequality constraints into

LP problems, while the Two-Phase method ensures a feasible starting solution by solving an

auxiliary LP before the main optimization. These techniques are particularly beneficial in AI

contexts where:

 Constraints cannot be violated (e.g., logical rules or regulatory limits).

 Interpretability matters (clear-cut, rule-based decisions are needed).

 Limited data is available, making classical solvers more adequate than data-hungry

heuristics.

 Integration with symbolic modules (e.g., combining LP solvers with knowledge bases or

logic rules).

1.3 Literature Review

Linear programming (LP) has long been a foundational technique in operations research and

optimization. While many modern AI systems rely on gradient-based or heuristic optimization,

classical LP methods particularly the Big M and Two-Phase approaches retain critical relevance

where hard constraints, logical dependencies, and interpretability are essential. This section

reviews key studies that apply or adapt these classical methods to AI-related problems.

Grimstad and Andersson (2019) investigated the use of LP and Mixed-Integer Linear

Programming (MILP) in the verification of neural networks with ReLU activations.[1] Their

work employs Big M formulations to encode the piecewise-linear nature of ReLU, and they

emphasize the impact of “tight” M-values on solver efficiency and numerical stability. This

represents a growing trend where LP tools are applied not to train models, but to verify or

constrain them post-training, contributing to the safety and robustness of AI systems.

Similarly, Bunel et al. (2020) proposed a unified MILP framework for verifying piecewise-linear

neural networks.[2] Their model also builds on Big M constraints to translate neural network

operations into an LP-compatible form. These applications demonstrate how classical LP

methods support model interpretability and robustness checking goals that are increasingly

important in AI safety and regulation.

Beyond neural verification, Two-Phase LP methods have been applied in practical decision-

making systems. For instance, Sultana (2022) explored the use of the Two-Phase Simplex

method in e-commerce advertising optimization.[3] Their approach ensures feasibility under

strict budget and platform constraints before optimizing for reach, highlighting how traditional

LP steps align with real-world AI-driven decision pipelines.

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 8

PAGE NO : 12

In industrial and planning domains, Timpe (2002) [4] demonstrated how MILP combined with

constraint programming (CP) could solve complex scheduling problems.[4] It employs Big M-

style constraints to model precedence and allocation logic. Such techniques are directly

transferable to AI systems focused on autonomous planning, multi-agent scheduling, or logistics.

Koberstein and Suhl (2007) expanded on the stability of LP solvers by developing improved dual

Phase-I algorithms for large-scale LP problems.[5] Their research contributes tools that are

applicable to AI tasks involving feasibility detection and constraint satisfaction, such as

structured decision-making systems or symbolic AI frameworks.

These studies show that while Big M and Two-Phase methods are classical, they are far from

obsolete. Instead, they serve specific and growing needs in AI namely: interpretable modeling,

constraint handling, symbolic reasoning, and formal verification. However, there is still a lack of

unified literature discussing their comparative strengths and best practices within AI pipelines.

This review paper aims to bridge that gap.

2. Overview of Big M and Two-Phase Methods

2.1 Basics of Linear Programming (LP)

Linear programming (LP) is a mathematical approach used to determine the optimal outcome of

a linear objective function, subject to a set of linear equality and inequality constraints. It is

expressed as:

Maximize or Minimize: Z=c1x1+c2x2+…+cnxn

Subject to constraints a11x1+a12x2+…+a1nxn ≤/ ≥/= b1

 a21x1+a22x2+…+a2nxn ≤/ ≥/= b2

 am1x1+am2x2+…+amnxn ≤/ ≥/= bm

satisfying non-negative restrictions x1,x2,…,xn≥0

where b1, b2, …., bm are constants

These problems are typically solved using the Simplex method, which moves from one vertex

(or corner point) of the feasible region to another until it finds the optimal solution. However, if

the LP includes equality constraints or “≥” constraints, a basic feasible solution may not be

readily available. In such cases, Big M and Two-Phase methods are introduced to facilitate the

solution process.

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 8

PAGE NO : 13

2.2 The Big M Method

The Big M method incorporates artificial variables into the LP problem when a feasible starting

solution is not obvious. It assigns large penalties (denoted as M) to these artificial variables in

the objective function, discouraging their presence in the final solution.

Example Concept: Consider objective function Z= x1+2x2

To convert an equality constraint: x1+x2=5

into a simplex-compatible form, we introduce an artificial variable A1: x1+x2+A1=5

Then, modify the objective function: Z = x1+2x2+MA1

where M is a large positive number. The simplex method will aim to minimize A1 due to its high

penalty, thus forcing it toward zero and maintaining feasibility.

Advantages:

 One-step approach (no separate phase for feasibility).

 Easy to implement for small or moderately sized problems.

Limitations: Choosing the right value for M is critical. If it’s too large, numerical instability can

occur. If it’s too small, the artificial variable might remain in the final solution, violating

feasibility.

2.3 The Two-Phase Method

The Two-Phase method avoids the use of an arbitrary penalty constant like M. Instead, it breaks

the solution into two parts:

 Phase I: Introduces artificial variables and minimizes their sum to find a feasible starting

solution.

 Phase II: Uses that feasible point as a starting solution to solve the original problem.

Procedure:

1. Add artificial variables where needed.

2. Define a new objective: minimize the sum of all artificial variables.

3. Solve Phase I. If the minimum value is zero, proceed to Phase II.

4. Remove artificial variables and solve the original objective.

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 8

PAGE NO : 14

Advantages:

 More numerically stable than Big M.

 Clearly separates feasibility and optimization.

Limitations:

 Requires solving two problems instead of one (computationally heavier).

 Slightly more complex to implement.

2.4 Relevance in AI Applications

Both Big M and Two-Phase methods have direct applications in modern AI systems where

constraints are non-negotiable, such as:

 MILP-based neural network verification (Big M)

 Logic-driven AI systems requiring feasibility before optimization (Two-Phase)

 Rule-based decision-making and explainable AI pipelines

 Task scheduling in robotics and operations where constraints define legality

These methods allow AI engineers to encode domain-specific logic, policies, or operational

constraints directly into optimization frameworks, bridging the gap between symbolic reasoning

and numeric optimization.

3. Applications in AI Systems

Classical linear programming methods like the Big M and Two-Phase approaches have found

renewed utility in modern AI systems that require deterministic behavior, interpretability, and

strict constraint adherence. While these methods are not typically used for training large-scale

models like deep neural networks, they are essential in several niche yet growing subfields of AI

where hard constraints must be encoded and enforced.

3.1 Neural Network Verification and Safety

One of the most impactful applications of the Big M method is in the verification of piecewise-

linear neural networks, such as those using ReLU activations. Neural networks can be encoded

into a mixed-integer linear programming (MILP) framework using Big M constraints to

represent activation behavior.

 Use Case: Verifying whether a neural network will behave correctly under adversarial

inputs.

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 8

PAGE NO : 15

 Example: Grimstad and Andersson (2019) used Big M-based MILP models to check

robustness of ReLU networks [1]. Bunel et al. (2018) [2], Fischetti and Jo (2017) [6], and

Schwan et al. (2022) [7] extended this to formal safety verification pipelines.

 Impact: Enables safety-critical AI systems (e.g., in autonomous driving or medical AI) to

meet formal certification requirements [10].

3.2 Rule-Constrained Decision Making

In domains like legal-tech, policy-driven automation, and ethical AI, models must make

decisions under hard rules (e.g., “if age < 18, deny access”). These rules can be embedded into

LP or MILP models using Big M-style logic constraints.

 Use Case: Building AI systems for government, HR, or financial compliance.

 Example: Logical implication constraints (e.g., “if A then B”) are modeled using MILP

formulations with Big M terms, as seen in verification frameworks [10] and logic-

enhanced ML models [16].

 Benefit: Guarantees rule compliance and produces auditable, interpretable models[8], [9].

3.3 Feature Selection with Logical Constraints

Feature selection in machine learning can be modeled as a constrained optimization problem.

Using LP and Big M, one can enforce rules like mutual exclusivity, required combinations, or

budget limits on selected features.

 Use Case: Building compact, interpretable models for healthcare or fraud detection.

 Approach: Formulate selection as 0-1 integer program with Big M constraints [11], [12].

 Advantage: Enables explainable AI by controlling feature inclusion rules.

3.4 Task Scheduling and Resource Allocation

The Two-Phase method is widely used in AI planning, job-shop scheduling, and multi-agent

coordination—especially in robotics and operations research settings.

 Use Case: Assigning tasks to robots in a factory while respecting time, energy, and

resource constraints.

 Example: Timpe (2002) applied MILP with logical constraints to optimize production

scheduling [4], and Sultana (2016) applied Two-Phase LP to advertising budget

allocation in a commercial decision model [3].

 How it helps: Phase I ensures feasibility of all constraints before optimizing task

distribution in Phase II [5].

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 8

PAGE NO : 16

3.5 Explainable AI and Logic-Based Inference Systems

Classical LP methods are used in symbolic AI and explainable inference systems, where the goal

is to reason over facts and constraints.

 Use Case: Designing transparent AI systems that mimic legal reasoning or policy

enforcement.

 Approach: Translate inference logic into LP constraints (e.g., facts, max flow, boolean

implications) [10], [13].

 Method: Two-Phase LP ensures feasibility of complex logic chains before computing

results [5].

3.6 Hybrid Symbolic–Neural Systems

In emerging neuro-symbolic architectures, LP solvers are integrated into deep learning pipelines

to enforce external rules or structural constraints.

 Use Case: Enforcing high-level rules in a reinforcement learning environment.

 Role of LP: Acts as a logic-checking layer between neural prediction and action

execution [15].

 Technique: LP solver (with Big M) evaluates symbolic logic during or after learning,

often using pre-processing or model reduction techniques to speed up solving [14], [16].

AI Domain LP Method Used Purpose

Neural Verification Big M (MILP) Encode ReLU logic, ensure robustness

Rule-Constrained Decision Big M Enforce logic/policy rules

Feature Selection Big M Select features under logical constraints

Scheduling & Planning Two-Phase Ensure feasibility, then optimize

Explainable Logic Models Two-Phase / Big M Model and evaluate structured inference

Neuro-Symbolic Systems Big M Enforce symbolic rules within learning

4. Comparative Analysis of Classical vs. Modern Optimization Methods

Modern AI systems are predominantly trained using gradient-based or heuristic optimization

techniques such as stochastic gradient descent (SGD), Adam optimizer, genetic algorithms (GA),

and particle swarm optimization (PSO). While these methods are highly effective for learning

from large-scale data and optimizing non-linear, high-dimensional functions, they do not provide

built-in mechanisms to enforce hard constraints, logical dependencies, or feasibility guarantees.

This is where classical linear programming techniques such as Big M and Two-Phase methods

maintain their relevance.

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 8

PAGE NO : 17

4.1 Transparency and Interpretability

 Classical LP Methods: Solutions derived from Big M and Two-Phase formulations are

inherently interpretable. Each variable, constraint, and result has a defined role, making

them suitable for applications that demand transparency such as law, healthcare, and

finance.

 Modern AI Optimizers: Neural networks optimized using SGD or Adam are often

considered black-box models. While accurate, they provide little insight into why or how

a decision was made, making them less suitable for regulated environments.

4.2 Constraint Handling

 Big M and Two-Phase: These methods are designed to solve constrained problems

directly. They can handle equality, inequality, and logical constraints explicitly, which is

essential in symbolic reasoning and structured planning.

 SGD and Evolutionary Algorithms: Constraints are typically handled indirectly (e.g.,

through penalty functions or soft constraints). There is no guarantee that constraints will

be strictly satisfied, especially under noise or limited data.

4.3 Applicability to Data-Scarce Environments

 Classical LP: Effective even in low-data or rule-driven scenarios where the problem can

be fully described using mathematical constraints. They do not require training data to

perform optimization.

 Modern Methods: Require large datasets for effective training and generalization. In data-

scarce conditions, performance degrades or models overfit.

4.4 Computational Efficiency and Scalability

 Big M: Solves small to medium LP problems efficiently but can face numerical

instability with large M values or when problem dimensions increase.

 Two-Phase: More stable for large-scale LP problems but involves two separate stages,

increasing computation time.

 Modern Methods: Gradient-based techniques like Adam scale well with millions of

parameters (e.g., in deep learning). However, they trade off precision and constraint

compliance.

4.5 Flexibility and Learning Capability

 Modern Optimizers excel at pattern recognition, function approximation, and

reinforcement learning, where the optimization landscape is non-linear and non-convex.

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 8

PAGE NO : 18

 LP Methods are restricted to linear models and constraints. While highly reliable within

their scope, they cannot approximate complex functions like neural networks.

4.6 Integration Possibilities

Rather than viewing classical and modern methods as mutually exclusive, many recent AI

systems combine both. For example:

 A neural network predicts likely outcomes, and a LP model refines the decision under

hard rules.

 Reinforcement learning policies are filtered using LP solvers to enforce safety limits.

 Feature selection or model compression is handled using MILP with Big M constraints

before model training.

These hybrid strategies open a path for constraint-aware AI, balancing learning power with rule

compliance and interpretability.

5. Conclusion and Future Work

5.1 Conclusion

Classical linear programming techniques, particularly the Big M and Two-Phase methods, have

demonstrated lasting value in artificial intelligence systems where constraint satisfaction,

transparency, and deterministic behavior are non-negotiable. Although modern AI has largely

shifted toward data-driven, gradient-based optimization, this review highlights how classical LP

methods continue to support critical applications such as neural network verification, symbolic

reasoning, rule-constrained decision-making, and task scheduling.

The Big M method is particularly useful for encoding logical rules and constraints into

optimization frameworks commonly applied in mixed-integer linear programming (MILP)

formulations. Meanwhile, the Two-Phase method provides a numerically stable approach for

finding feasible solutions in complex constrained systems. Their inherent interpretability and

formal structure make them indispensable in AI domains that prioritize fairness, compliance, and

auditability.

As AI systems become more integrated into sensitive and regulated environments, the need for

explainable and constraint-aware decision-making will continue to grow. Classical LP methods

provide a mathematical backbone for such systems, ensuring that they remain accountable and

safe.

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 8

PAGE NO : 19

5.2 Future Work

While this review has outlined the relevance and utility of Big M and Two-Phase methods in AI,

several open areas remain for future exploration:

Scalability Improvements: Research is needed to improve the scalability of LP solvers for

handling high-dimensional AI problems, especially when integrating logic-based constraints in

large models.

Hybrid Architectures: Future systems can more deeply integrate LP solvers with neural

networks, reinforcement learning agents, and symbolic logic frameworks to enforce rules in real

time.

Numerical Stability Enhancements: Developing adaptive methods to dynamically tune or

eliminate large penalty values (as in Big M) could improve solver performance and reliability.

Explainability Tools: LP-based methods could serve as the foundation for new explainable AI

models that provide traceable decision paths, especially when fairness and regulatory compliance

are required.

Application Expansion: Additional use cases in healthcare, legal-tech, ethical AI, and smart

infrastructure systems can benefit from further empirical research on classical LP integration.

In conclusion, Big M and Two-Phase methods are not relics of the past but rather underutilized

enablers of modern, constraint-conscious AI. Their systematic, rule-driven nature makes them

vital tools for building transparent, robust, and legally compliant intelligent systems in the years

to come.

References

1. B. Grimstad and H. Andersson, “RELU Networks as Surrogate Models in Mixed-Integer

Linear Programs,” Computers & Chemical Engineering, vol. 131, 2019,

doi: 10.1016/j.compchemeng.2019.106580

2. R. Bunel, I. Turkaslan, P. H. S. Torr, P. Kohli, and M. P. Kumar, “A Unified View of

Piecewise-Linear Neural Network Verification,” in Advances in Neural Information

Processing Systems (NeurIPS), vol. 31, 2018, pp. 4790–4801,

doi: 10.48550/arXiv.1711.00455

3. N. Sultana, “Application of the Two-Phase Simplex Method for Optimal Advertisement

Decision: A Study on an E-commerce Company,” IIUC Business Review, vol. 5, Dec 2016,

pp. 59–76, doi: 10.3329/iiucs.v14i1.37651.

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 8

PAGE NO : 20

4. C. Timpe, “Solving planning and scheduling problems with combined integer and constraint

programming,” OR Spectrum, vol. 24, no. 4, pp. 431–448, 2002, doi: 10.1007/s00291-002-

0107-1.

5. A. Koberstein and L. Suhl, “An advanced implementation of a dual simplex Phase-I

algorithm,” Computational Optimization and Applications, vol. 36, nos. 2–3, pp. 319–348,

2007, doi: 10.1007/s10589-007-9022-3.

6. M. Fischetti and J. Jo, “Deep Neural Networks as 0-1 Mixed Integer Linear Programs: A

Feasibility Study,” CoRR, vol. abs/1712.06174, 2017, doi: 10.48550/arXiv.1712.06174.

7. R. Schwan, C. N. Jones & D. Kuhn, “Stability Verification of Neural Network Controllers

using Mixed-Integer Programming,” arXiv, vol. abs/2206.13374, 2022,

doi: 10.48550/arXiv.2206.13374.

8. R. Ehlers, “Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks,”

arXiv preprint arXiv:1705.01320, 2017, doi: 10.48550/arXiv.1705.01320.

9. C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barrett, and M. J. Kochenderfer, “Algorithms for

Verifying Deep Neural Networks,” arXiv preprint arXiv:1903.06758, 2019,

doi: 10.48550/arXiv.1903.06758.

10. G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex: A Simplex-

Based SMT Solver for Verifying Deep Neural Networks,” Formal Methods in System

Design, vol. 60, no. 1, 2022, pp. 87–115, doi: 10.1007/s10703-021-00363-7.

11. S. Maldonado, L. I. Martínez-Merino, and A. M. Rodríguez-Chía, “Feature Selection for

Support Vector Machines via Mixed Integer Linear Programming,” Information Sciences,

vol. 279, pp. 163–175, 2014, doi: 10.1016/j.ins.2014.03.110.

12. F. Labbé, L. I. Martínez-Merino, and A. M. Rodríguez-Chía, “Mixed Integer Linear

Programming for Feature Selection in Support Vector Machine,” arXiv preprint

arXiv:1808.02435, 2018, doi: 10.48550/arXiv.1808.02435.

13. J. Zhang, C. Liu, J. Yan, X. Li, H.-L. Zhen, and M. Yuan, “A Survey for Solving Mixed

Integer Programming via Machine Learning,” CoRR, vol. abs/2203.02878, 2022.

14. L. Scavuzzo, K. Aardal, A. Lodi, and N. Yorke-Smith, “Machine learning augmented branch

and bound for mixed integer linear programming,” Mathematical Programming, 2024,

doi: 10.1007/s10107-024-02130-y.

15. Y. Li, C. Chen, J. Li, J. Duan, X. Han, T. Zhong, V. Chau, W. Wu, and W. Wang, “Fast and

Interpretable Mixed-Integer Linear Program Solving by Learning Model Reduction,” AAAI

Conference on Artificial Intelligence, vol. 39, no. 25, pp. 27090–27098, 2025,

doi: 10.1609/aaai.v39i25.34916.

16. A. Kiruluta and A. Lemos, “Unsupervised Machine Learning Hybrid Approach Integrating

Linear Programming in Loss Function: A Robust Optimization Technique,” arXiv preprint

arXiv:2408.09967, 2024, doi:10.48550/arXiv.2408.09967

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 8

PAGE NO : 21

