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Abstract  

Linear programming (LP) has long been a fundamental tool in optimization, with classical 

methods such as the Big M and Two-Phase techniques playing key roles in solving constrained 

problems. Although modern artificial intelligence (AI) typically relies on gradient-based and 

heuristic algorithms, LP methods still offer practical advantages in specific areas where rules, 

constraints, and interpretability are critical. This review explores the working principles of the 

Big M and Two-Phase methods and highlights their relevance in AI applications such as rule-

based reasoning, feature selection, task scheduling, and hybrid symbolic-ML systems. By 

comparing these classical techniques with modern optimization approaches, the paper outlines 

their strengths, limitations, and suitable use cases. The review concludes by discussing the 

potential for these LP methods to support the development of interpretable and constraint-aware 

AI systems in the future. 

Keywords: Linear Programming, Big M Method, Two Phase Method, Constraint Handling, 

Artificial Intelligence 

1. Introduction 

1.1 The Need for Classical Optimization in AI  

As artificial intelligence (AI) continues to evolve, the majority of optimization efforts have 

shifted toward data-driven methods such as stochastic gradient descent (SGD), evolutionary 

algorithms, swarm intelligence, and reinforcement learning. These techniques are well-suited for 

training complex, high-dimensional models—such as deep neural networks—where closed-form 

solutions are impractical and exact constraint satisfaction is not required. However, despite their 

success in pattern recognition, recommendation systems, and autonomous agents, these modern 
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optimization tools often function as “black boxes,” making it difficult to impose hard constraints 

or explain decision boundaries. 

In contrast, many emerging AI applications demand structured, rule-based reasoning, hard 

constraints, and explicitly interpretable outcomes. Domains such as legal-tech, healthcare 

diagnostics, supply chain scheduling, and fairness-aware systems require strict compliance with 

external rules and policies. For instance, an AI model used for loan approvals must respect anti-

discrimination laws, while a robotic system navigating a factory floor must stay within defined 

operational zones. These are not merely optimization problems—they are constraint-satisfaction 

problems, where the solution must meet clearly defined conditions without exception. 

This growing need for constrained optimization has reignited interest in classical linear 

programming (LP) techniques, especially in areas of AI where interpretability, rule enforcement, 

or deterministic outcomes are crucial. In particular, the Big M method and Two-Phase method 

offer reliable ways to handle equality and inequality constraints, model logical conditions, and 

solve feasibility problems where standard machine learning optimizers struggle. 

The Big M method introduces artificial variables with large penalty coefficients to enforce 

constraints, allowing models to simulate logical “if-then” conditions within an LP framework. 

The Two-Phase method first finds a feasible starting point (Phase I), then solves the actual 

optimization problem (Phase II), ensuring that the model respects the constraint structure before 

optimizing for performance. These techniques are highly suitable for AI subfields where 

constraints are not negotiable, and where solutions must be explainable, reproducible, and 

auditable. 

Moreover, in low-data environments or rule-driven systems where training examples are limited 

or not statistically representative, classical methods can provide robust and mathematically 

grounded alternatives to data-heavy learning approaches. By formulating AI tasks as LP 

problems with structured objective functions and bounded variables, developers can maintain full 

control over the behavior of the model, something often lost in neural or evolutionary 

architectures. 

Ultimately, the resurgence of interest in classical optimization reflects a broader trend: a shift 

from purely statistical modeling to hybrid systems that integrate learning with logic, rules, and 

structure. In this context, Big M and Two-Phase methods remain powerful tools that complement 

modern AI, enabling models that are not only intelligent but also accountable, interpretable, and 

compliant with real-world constraints. 
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1.2 Why Big M and Two-Phase Methods? 

The Big M method introduces large penalty constants to incorporate inequality constraints into 

LP problems, while the Two-Phase method ensures a feasible starting solution by solving an 

auxiliary LP before the main optimization. These techniques are particularly beneficial in AI 

contexts where: 

 Constraints cannot be violated (e.g., logical rules or regulatory limits). 

 Interpretability matters (clear-cut, rule-based decisions are needed). 

 Limited data is available, making classical solvers more adequate than data-hungry 

heuristics. 

 Integration with symbolic modules (e.g., combining LP solvers with knowledge bases or 

logic rules). 

1.3 Literature Review 

Linear programming (LP) has long been a foundational technique in operations research and 

optimization. While many modern AI systems rely on gradient-based or heuristic optimization, 

classical LP methods particularly the Big M and Two-Phase approaches retain critical relevance 

where hard constraints, logical dependencies, and interpretability are essential. This section 

reviews key studies that apply or adapt these classical methods to AI-related problems. 

Grimstad and Andersson (2019) investigated the use of LP and Mixed-Integer Linear 

Programming (MILP) in the verification of neural networks with ReLU activations.[1] Their 

work employs Big M formulations to encode the piecewise-linear nature of ReLU, and they 

emphasize the impact of “tight” M-values on solver efficiency and numerical stability. This 

represents a growing trend where LP tools are applied not to train models, but to verify or 

constrain them post-training, contributing to the safety and robustness of AI systems. 

Similarly, Bunel et al. (2020) proposed a unified MILP framework for verifying piecewise-linear 

neural networks.[2] Their model also builds on Big M constraints to translate neural network 

operations into an LP-compatible form. These applications demonstrate how classical LP 

methods support model interpretability and robustness checking goals that are increasingly 

important in AI safety and regulation. 

Beyond neural verification, Two-Phase LP methods have been applied in practical decision-

making systems. For instance, Sultana (2022) explored the use of the Two-Phase Simplex 

method in e-commerce advertising optimization.[3]  Their approach ensures feasibility under 

strict budget and platform constraints before optimizing for reach, highlighting how traditional 

LP steps align with real-world AI-driven decision pipelines. 
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In industrial and planning domains, Timpe (2002) [4] demonstrated how MILP combined with 

constraint programming (CP) could solve complex scheduling problems.[4] It employs Big M-

style constraints to model precedence and allocation logic. Such techniques are directly 

transferable to AI systems focused on autonomous planning, multi-agent scheduling, or logistics. 

Koberstein and Suhl (2007) expanded on the stability of LP solvers by developing improved dual 

Phase-I algorithms for large-scale LP problems.[5]   Their research contributes tools that are 

applicable to AI tasks involving feasibility detection and constraint satisfaction, such as 

structured decision-making systems or symbolic AI frameworks. 

These studies show that while Big M and Two-Phase methods are classical, they are far from 

obsolete. Instead, they serve specific and growing needs in AI namely: interpretable modeling, 

constraint handling, symbolic reasoning, and formal verification. However, there is still a lack of 

unified literature discussing their comparative strengths and best practices within AI pipelines. 

This review paper aims to bridge that gap. 

2. Overview of Big M and Two-Phase Methods 

2.1 Basics of Linear Programming (LP) 

Linear programming (LP) is a mathematical approach used to determine the optimal outcome of 

a linear objective function, subject to a set of linear equality and inequality constraints. It is 

expressed as: 

Maximize or Minimize: Z=c1x1+c2x2+…+cnxn  

Subject to constraints    a11x1+a12x2+…+a1nxn  ≤/ ≥/= b1 

                                      a21x1+a22x2+…+a2nxn  ≤/ ≥/= b2 

                                       

                                      am1x1+am2x2+…+amnxn ≤/ ≥/= bm 

satisfying non-negative restrictions  x1,x2,…,xn≥0  

where b1, b2, …., bm are constants 

These problems are typically solved using the Simplex method, which moves from one vertex 

(or corner point) of the feasible region to another until it finds the optimal solution. However, if 

the LP includes equality constraints or “≥” constraints, a basic feasible solution may not be 

readily available. In such cases, Big M and Two-Phase methods are introduced to facilitate the 

solution process. 
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2.2 The Big M Method 

The Big M method incorporates artificial variables into the LP problem when a feasible starting 

solution is not obvious. It assigns large penalties (denoted as M) to these artificial variables in 

the objective function, discouraging their presence in the final solution. 

Example Concept: Consider objective function Z= x1+2x2 

To convert an equality constraint: x1+x2=5  

into a simplex-compatible form, we introduce an artificial variable A1:  x1+x2+A1=5 

Then, modify the objective function: Z = x1+2x2+MA1 

where M is a large positive number. The simplex method will aim to minimize A1 due to its high 

penalty, thus forcing it toward zero and maintaining feasibility. 

Advantages: 

 One-step approach (no separate phase for feasibility). 

 Easy to implement for small or moderately sized problems. 

Limitations: Choosing the right value for M is critical. If it’s too large, numerical instability can 

occur. If it’s too small, the artificial variable might remain in the final solution, violating 

feasibility. 

2.3 The Two-Phase Method 

The Two-Phase method avoids the use of an arbitrary penalty constant like M. Instead, it breaks 

the solution into two parts: 

 Phase I: Introduces artificial variables and minimizes their sum to find a feasible starting 

solution. 

 Phase II: Uses that feasible point as a starting solution to solve the original problem. 

Procedure: 

1. Add artificial variables where needed. 

2. Define a new objective: minimize the sum of all artificial variables. 

3. Solve Phase I. If the minimum value is zero, proceed to Phase II. 

4. Remove artificial variables and solve the original objective. 
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Advantages: 

 More numerically stable than Big M. 

 Clearly separates feasibility and optimization. 

Limitations: 

 Requires solving two problems instead of one (computationally heavier). 

 Slightly more complex to implement. 

2.4 Relevance in AI Applications 

Both Big M and Two-Phase methods have direct applications in modern AI systems where 

constraints are non-negotiable, such as: 

 MILP-based neural network verification (Big M) 

 Logic-driven AI systems requiring feasibility before optimization (Two-Phase) 

 Rule-based decision-making and explainable AI pipelines 

 Task scheduling in robotics and operations where constraints define legality 

These methods allow AI engineers to encode domain-specific logic, policies, or operational 

constraints directly into optimization frameworks, bridging the gap between symbolic reasoning 

and numeric optimization. 

3. Applications in AI Systems 

Classical linear programming methods like the Big M and Two-Phase approaches have found 

renewed utility in modern AI systems that require deterministic behavior, interpretability, and 

strict constraint adherence. While these methods are not typically used for training large-scale 

models like deep neural networks, they are essential in several niche yet growing subfields of AI 

where hard constraints must be encoded and enforced. 

3.1 Neural Network Verification and Safety 

One of the most impactful applications of the Big M method is in the verification of piecewise-

linear neural networks, such as those using ReLU activations. Neural networks can be encoded 

into a mixed-integer linear programming (MILP) framework using Big M constraints to 

represent activation behavior. 

 Use Case: Verifying whether a neural network will behave correctly under adversarial 

inputs. 
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 Example: Grimstad and Andersson (2019) used Big M-based MILP models to check 

robustness of ReLU networks [1]. Bunel et al. (2018) [2], Fischetti and Jo (2017) [6], and 

Schwan et al. (2022) [7] extended this to formal safety verification pipelines. 

 Impact: Enables safety-critical AI systems (e.g., in autonomous driving or medical AI) to 

meet formal certification requirements [10]. 

3.2 Rule-Constrained Decision Making 

In domains like legal-tech, policy-driven automation, and ethical AI, models must make 

decisions under hard rules (e.g., “if age < 18, deny access”). These rules can be embedded into 

LP or MILP models using Big M-style logic constraints. 

 Use Case: Building AI systems for government, HR, or financial compliance. 

 Example: Logical implication constraints (e.g., “if A then B”) are modeled using MILP 

formulations with Big M terms, as seen in verification frameworks [10] and logic-

enhanced ML models [16]. 

 Benefit: Guarantees rule compliance and produces auditable, interpretable models[8], [9]. 

3.3 Feature Selection with Logical Constraints 

Feature selection in machine learning can be modeled as a constrained optimization problem. 

Using LP and Big M, one can enforce rules like mutual exclusivity, required combinations, or 

budget limits on selected features. 

 Use Case: Building compact, interpretable models for healthcare or fraud detection. 

 Approach: Formulate selection as 0-1 integer program with Big M constraints [11], [12]. 

 Advantage: Enables explainable AI by controlling feature inclusion rules. 

3.4 Task Scheduling and Resource Allocation 

The Two-Phase method is widely used in AI planning, job-shop scheduling, and multi-agent 

coordination—especially in robotics and operations research settings. 

 Use Case: Assigning tasks to robots in a factory while respecting time, energy, and 

resource constraints. 

 Example: Timpe (2002) applied MILP with logical constraints to optimize production 

scheduling [4], and Sultana (2016) applied Two-Phase LP to advertising budget 

allocation in a commercial decision model [3]. 

 How it helps: Phase I ensures feasibility of all constraints before optimizing task 

distribution in Phase II [5]. 
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3.5 Explainable AI and Logic-Based Inference Systems 

Classical LP methods are used in symbolic AI and explainable inference systems, where the goal 

is to reason over facts and constraints. 

 Use Case: Designing transparent AI systems that mimic legal reasoning or policy 

enforcement. 

 Approach: Translate inference logic into LP constraints (e.g., facts, max flow, boolean 

implications) [10], [13]. 

 Method: Two-Phase LP ensures feasibility of complex logic chains before computing 

results [5]. 

3.6 Hybrid Symbolic–Neural Systems 

In emerging neuro-symbolic architectures, LP solvers are integrated into deep learning pipelines 

to enforce external rules or structural constraints. 

 Use Case: Enforcing high-level rules in a reinforcement learning environment. 

 Role of LP: Acts as a logic-checking layer between neural prediction and action 

execution [15]. 

 Technique: LP solver (with Big M) evaluates symbolic logic during or after learning, 

often using pre-processing or model reduction techniques to speed up solving [14], [16]. 

AI Domain LP Method Used Purpose 

Neural Verification Big M (MILP) Encode ReLU logic, ensure robustness 

Rule-Constrained Decision Big M Enforce logic/policy rules 

Feature Selection Big M Select features under logical constraints 

Scheduling & Planning Two-Phase Ensure feasibility, then optimize 

Explainable Logic Models Two-Phase / Big M Model and evaluate structured inference 

Neuro-Symbolic Systems Big M Enforce symbolic rules within learning 

4. Comparative Analysis of Classical vs. Modern Optimization Methods 

Modern AI systems are predominantly trained using gradient-based or heuristic optimization 

techniques such as stochastic gradient descent (SGD), Adam optimizer, genetic algorithms (GA), 

and particle swarm optimization (PSO). While these methods are highly effective for learning 

from large-scale data and optimizing non-linear, high-dimensional functions, they do not provide 

built-in mechanisms to enforce hard constraints, logical dependencies, or feasibility guarantees. 

This is where classical linear programming techniques such as Big M and Two-Phase methods 

maintain their relevance. 
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4.1 Transparency and Interpretability 

 Classical LP Methods: Solutions derived from Big M and Two-Phase formulations are 

inherently interpretable. Each variable, constraint, and result has a defined role, making 

them suitable for applications that demand transparency such as law, healthcare, and 

finance. 

 Modern AI Optimizers: Neural networks optimized using SGD or Adam are often 

considered black-box models. While accurate, they provide little insight into why or how 

a decision was made, making them less suitable for regulated environments. 

4.2 Constraint Handling 

 Big M and Two-Phase: These methods are designed to solve constrained problems 

directly. They can handle equality, inequality, and logical constraints explicitly, which is 

essential in symbolic reasoning and structured planning. 

 SGD and Evolutionary Algorithms: Constraints are typically handled indirectly (e.g., 

through penalty functions or soft constraints). There is no guarantee that constraints will 

be strictly satisfied, especially under noise or limited data. 

4.3 Applicability to Data-Scarce Environments 

 Classical LP: Effective even in low-data or rule-driven scenarios where the problem can 

be fully described using mathematical constraints. They do not require training data to 

perform optimization. 

 Modern Methods: Require large datasets for effective training and generalization. In data-

scarce conditions, performance degrades or models overfit. 

4.4 Computational Efficiency and Scalability 

 Big M: Solves small to medium LP problems efficiently but can face numerical 

instability with large M values or when problem dimensions increase. 

 Two-Phase: More stable for large-scale LP problems but involves two separate stages, 

increasing computation time. 

 Modern Methods: Gradient-based techniques like Adam scale well with millions of 

parameters (e.g., in deep learning). However, they trade off precision and constraint 

compliance. 

4.5 Flexibility and Learning Capability 

 Modern Optimizers excel at pattern recognition, function approximation, and 

reinforcement learning, where the optimization landscape is non-linear and non-convex. 
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 LP Methods are restricted to linear models and constraints. While highly reliable within 

their scope, they cannot approximate complex functions like neural networks. 

4.6 Integration Possibilities 

Rather than viewing classical and modern methods as mutually exclusive, many recent AI 

systems combine both. For example: 

 A neural network predicts likely outcomes, and a LP model refines the decision under 

hard rules. 

 Reinforcement learning policies are filtered using LP solvers to enforce safety limits. 

 Feature selection or model compression is handled using MILP with Big M constraints 

before model training. 

These hybrid strategies open a path for constraint-aware AI, balancing learning power with rule 

compliance and interpretability. 

5. Conclusion and Future Work 

5.1 Conclusion 

Classical linear programming techniques, particularly the Big M and Two-Phase methods, have 

demonstrated lasting value in artificial intelligence systems where constraint satisfaction, 

transparency, and deterministic behavior are non-negotiable. Although modern AI has largely 

shifted toward data-driven, gradient-based optimization, this review highlights how classical LP 

methods continue to support critical applications such as neural network verification, symbolic 

reasoning, rule-constrained decision-making, and task scheduling. 

The Big M method is particularly useful for encoding logical rules and constraints into 

optimization frameworks commonly applied in mixed-integer linear programming (MILP) 

formulations. Meanwhile, the Two-Phase method provides a numerically stable approach for 

finding feasible solutions in complex constrained systems. Their inherent interpretability and 

formal structure make them indispensable in AI domains that prioritize fairness, compliance, and 

auditability. 

As AI systems become more integrated into sensitive and regulated environments, the need for 

explainable and constraint-aware decision-making will continue to grow. Classical LP methods 

provide a mathematical backbone for such systems, ensuring that they remain accountable and 

safe. 
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5.2 Future Work 

While this review has outlined the relevance and utility of Big M and Two-Phase methods in AI, 

several open areas remain for future exploration: 

Scalability Improvements: Research is needed to improve the scalability of LP solvers for 

handling high-dimensional AI problems, especially when integrating logic-based constraints in 

large models. 

Hybrid Architectures: Future systems can more deeply integrate LP solvers with neural 

networks, reinforcement learning agents, and symbolic logic frameworks to enforce rules in real 

time. 

Numerical Stability Enhancements: Developing adaptive methods to dynamically tune or 

eliminate large penalty values (as in Big M) could improve solver performance and reliability. 

Explainability Tools: LP-based methods could serve as the foundation for new explainable AI 

models that provide traceable decision paths, especially when fairness and regulatory compliance 

are required. 

Application Expansion: Additional use cases in healthcare, legal-tech, ethical AI, and smart 

infrastructure systems can benefit from further empirical research on classical LP integration. 

In conclusion, Big M and Two-Phase methods are not relics of the past but rather underutilized 

enablers of modern, constraint-conscious AI. Their systematic, rule-driven nature makes them 

vital tools for building transparent, robust, and legally compliant intelligent systems in the years 

to come. 
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