
Voice and Gesture-Driven IoT System: A Novel Approach for Enhanced

HCI

Vinay Bodem

dept. of Artificial intelligence and

data science(AIDS)

GMRIT

Rajam, India

bodemvinay@gmail.com

Yamini Ponduru

dept. of Artificial intelligence and

data science(AIDS)

GMRIT

Rajam, India

yaminiponduru2024@gmail.com

Lakshmi Devi. N

dept. of Computer Science and

Engineering(AIML)

GMRIT

Rajam, India

lakshmidevi.n@gmail.com

 Anil Kumar Koduru

 dept. of Artificial intelligence and

 data science(AIDS)

GMRIT

Rajam, India

21341A4529@gmrit.edu.in

Tulasi Ram Veerni

dept. of Artificial intelligence and

data science(AIDS)

GMRIT

Rajam, India

Tulasiramveerni007@gmail.com

 Hari Prasad Ippili

 dept. of Artificial intelligence and

 data science(AIDS)

GMRIT

Rajam, India

hariprasadippili1234@gmail.com

Abstract— Human-Computer Interaction (HCI) explores the

integration of voice commands and hand gestures for system

control. Leveraging advancements in speech recognition, voice

command technology provides an intuitive communication

channel with computing devices. Simultaneously, hand gestures

offer a natural, non-intrusive alternative, particularly valuable

in contexts where traditional input methods are cumbersome.

This paper extends the integration of voice commands and hand

gestures into the Internet of Things (IoT) framework,

specifically utilizing the ESP32 microcontroller. Known for its

wireless communication capabilities and low power

consumption, the device serves as the core of this IoT-enabled

system, enabling users to control smart devices and appliances

seamlessly through voice and gesture recognition. This fusion

supports remote, real-time management of IoT devices,

creating a more connected and intelligent environment.

Rigorous user testing, feedback analysis, and usability

assessments evaluate the system's effectiveness, accuracy, and

user satisfaction. The inclusion of IoT broadens the scope of

HCI applications, offering practical solutions for smart homes,

healthcare monitoring, and industrial automation. Additionally,

the system’s potential applications span diverse domains,

including gaming, healthcare, education, and smart home

automation, contributing to a more intuitive and accessible

interaction between users and technology.

Keywords: - Voice command, Hand gestures, System control,

Human-computer interaction (HCI), Speech recognition,

Gesture-based interactions, Internet of Things (IOT).

I. Introduction

The paper explores the integration of voice command and hand

gesture recognition in human-computer interaction (HCI) to

offer more intuitive and natural ways of interacting with digital

systems. Voice command, powered by natural language

processing (NLP), enables users to control devices and execute

commands using spoken instructions, making it especially

useful for hands-free operation and accessibility. Hand gesture

recognition uses computer vision and machine learning to

interpret hand and finger movements, allowing tactile and

gesture-based interaction, which complements traditional input

methods.

The paper highlights the growing role of these technologies in

various applications such as gaming, virtual reality, smart homes,

healthcare, and tools for individuals with disabilities.

Additionally, the research extends the application of HCI

modalities to the Internet of Things (IoT) by using the ESP32

microcontroller—a low-power device with Wi-Fi and Bluetooth.

By combining speech recognition and computer vision, the

system enables real-time, hands-free control of IoT devices in

smart environments. This approach offers a practical, user-

friendly interface for controlling devices in smart homes,

healthcare systems, and industrial automation, making HCI more

accessible and effective for everyday use.

Applications of Voice Command HCI:

• Smart Homes: Voice-controlled devices like smart

speakers, thermostats, and lighting systems allow users

to manage their home environments effortlessly.

• Healthcare: Voice interfaces are used in healthcare for

dictation of medical records, patient monitoring, and

voice-controlled medical devices, improving efficiency

and accessibility for healthcare professionals and

patients.

• Education: Voice-controlled educational tools and

language learning apps provide interactive and

engaging learning experiences for students of all ages.

Applications of Hand Gesture Recognition HCI:

• Gaming and Entertainment: Gesture-based gaming

consoles and VR/AR systems offer immersive gaming

experiences where users can control gameplay and

interact with virtual environments using natural hand

movements.

• Industrial Automation: Gesture-controlled interfaces in

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 4

PAGE NO : 215

industrial settings improve worker safety and

efficiency by enabling hands-free control of

machinery, equipment, and robotic systems.

II. Literature survey

This collection of papers provides an overview of recent

advances in hand gesture recognition, voice command systems,

and their applications in human-computer interaction (HCI),

particularly in conjunction with IoT devices and virtual

assistants. Here's a summary of each paper:

1. Zahra, R., Shehzadi, A., Sharif, M. I., Karim, A., Azam,

S., De Boer, F., Jonkman, M., & Mehmood, M. (2021).

discuss a camera-based interactive wall display system that uses

bare hand gestures, eliminating the need for external devices

like gloves. The system consists of three modules: gesture

recognition (using Genetic Algorithms and Otsu thresholding),

controlling external functions, and finger counting (using the

convexity hull method), focusing on efficiency and natural

interaction.

2. Sánchez-Nielsen, E., Antón-Canalis, L., & Hernández-

Tejera, M. (2004). aim to develop a low-cost, real-time vision

system for hand gesture recognition. Their system uses skin

color and blob analysis to detect hand postures, achieving 90%

accuracy, though it’s influenced by factors like lighting

conditions and background complexity.

3.Alnilam, A., & Zakariah, M. (2022). using Reset and Mobile

Net for recognizing Arabic sign language. Their system

achieves high classification accuracy on the ArSL2018 dataset

and is notable for its ability to handle 32 different sign language

classes.

4. Badi, H. (2016). compares two feature extraction methods

(hand contour and complex moments) for hand gesture

recognition. While complex moments-based neural networks

offer greater accuracy, hand contour-based models provide

faster training speeds.

5. Xu, J., & Wang, H. (2022). Wang present a robust hand

gesture recognition system based on RGB-D data. They use the

Distance Transform algorithm for static gesture recognition and

a combination of Euclidean distance and skeleton feature

modulus ratios for dynamic gestures.

Overall, these papers collectively illustrate the progress and

challenges in HCI, particularly through hand gesture

recognition, voice commands, and virtual assistants, with

applications in various fields including healthcare, education,

and smart environments.

III. Methodology

 Hand Gestures Recognition

1. Data Collection: The data is created which consists of

different types of hand gestures that are created by

customized ones.

2. Hand Image: Hand input images capture hand

movements, poses, or gestures to enable natural

interaction with digital devices in HCI applications.

In this context, static hand input images show the

hand in a specific pose or position, enhancing

usability and accessibility.

Fig 1: Hand Gesture Dataset

3. Hand Detection: Hand detection identifies and locates

human hands in images or video frames, typically using

bounding boxes or key points. It serves as the first step for

further analysis, like gesture recognition or hand tracking.

Fig 2: Hand Detection

4. Pre-Processing: Preprocessing in hand gesture

recognition enhances input data quality before using it in

a machine learning model. Key steps include

• Image Acquisition: Capturing hand gestures using

cameras or sensors with good lighting.

• Image Cropping: Focusing on the hand region to

remove irrelevant background.

• Noise Reduction: Applying techniques like

Gaussian blurring to reduce image noise while

preserving important features.

5. Feature Extraction: We used a "Hand Tracking

Module" to detect, track, and analyze hand
movements in applications like HCI, virtual reality,

and augmented reality. The module captures video

using OpenCV and performs

• Hand Detection: Uses techniques like color

segmentation or machine learning to detect

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 4

PAGE NO : 216

hands in images or video.

• Hand Landmark Detection: Identifies key

points such as fingertips, knuckles, and palm

points on the detected hands.

• Finger Tracking: Tracks finger movements by

analyzing the spatial relationships between the

detected landmarks.

6. Recognition: The system uses finger counting and

 the convex hull method to recognize gestures like

 thumbs up, pointing, or a closed fist.

• Rule-based Classification: Simple algorithms

classify gestures based on the detected finger

positions, such as recognizing a thumbs up or

pointing.

• Template Matching: Compares hand

configurations with predefined gesture
templates for accurate recognition.

7. Gesture Dictionary: A collection of reference gestures

the system recognizes, each linked to a specific

command.

• Geometric Data: Stores locations of fingertips, palm

center, and finger angles.

• Image Templates: Predefined hand images

representing

gestures.

• Feature Descriptors: Advanced systems use key

point

detection for gesture representation.

• Command Association: Each gesture triggers a

specification, like a raised index finger for a "click"

command in a virtual environment.

8. Command: The system executes the command

associated with the recognized gesture. This may involve

sending a signal to a device, performing an action on a

computer, or controlling a robot.

System Commands:

• Volume Control

• Power Management

• Window Management

• Application Commands

• Other Commands

These commands are executed based on the specific

hand gestures detected by the program. The code defines

a mapping between finger combinations and

corresponding commands. By using hand gestures as an

interface, the code allows for a hands-free way to control

the system and applications.

9. Execution: Once a gesture is recognized, the system

translates the recognized gesture into a corresponding

command.

Fig 3: Hand Gesture Flow Chart

Fig 4: Hand Gestures and its Functions

 Voice Commands Recognition

1. Input Voice Command: An input voice command is a

spoken instruction given to a voice control system,

allowing users to convey actions verbally instead of

typing. Clear and concise phrases, like "open

YouTube," "increase volume," or "send a message,"

help the system accurately understand the desired

action. This hands-free approach offers a more

convenient alternative to traditional input methods.

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 4

PAGE NO : 217

2. Conversion of Voice into Text using Speech

Recognition Module: After the user speaks, the voice

control system employs a speech recognition module

to convert audio into text. This module analyzes sound

waves and matches them to patterns of words and

phrases in its database.

Capturing Audio: The process starts by

capturing audio input from a connected

microphone.

Preprocessing: Preprocessing steps, like

reducing ambient noise, enhance the clarity of

the user’s voice for better recognition.

Recognition: The preprocessed audio is

analyzed by the speech recognition system,

using algorithms to identify patterns of

spoken words or phrases.

Decoding: Recognized audio is decoded into

phonemes or words by comparing extracted

features with known speech patterns in the

system's language model.

Output: The final output is the recognized

speech in text form, which can be used for

executing commands, generating captions, or

transcribing dialogues.

3. Understanding the command given by the User:

 Once the speech recognition module converts the

voice to text, the system tries to understand the

meaning of the command. This may involve tasks like

identifying the keywords in the sentence and

understanding the overall intent of the user.

4. Processing the command: After understanding the

command, the system needs to process it and determine

the appropriate action to take. This might involve

breaking down the command into smaller steps or

fetching information from external sources.

➢ Command Matching and Breakdown:

• The system maintains a database of

supported commands and their

corresponding actions. When it receives a

user command (like "open YouTube"), it

searches this database for a match.

• If the command is simple and well-defined

(e.g., "increase volume"), the system can

directly proceed to the execution stage.

➢ Argument Extraction:

• Some commands require additional

information to perform the desired action

accurately. These are called arguments.

For instance, opening a specific website

requires the URL as an argument.

➢ Function Execution:

• Once the system understands the

command and any necessary arguments, it

translates that knowledge into concrete

actions. This is where pre-written

functions come into play.

• Based on the parsed command and

arguments, the system triggers the

appropriate function(s) to carry out the

user's request.

➢ System Interaction:

• The functions executed in the previous

step interact with various components to

fulfill the user's command. This

interaction might involve:

• Accessing the operating system (OS) to

adjust settings (e.g., volume control) or

launch applications.

5. Checking in the Commands and Functions:

The system checks its database of commands and

functions to see if it can find a match for the user's

command. This database likely contains a list of all

supported commands and the corresponding functions

that the system should execute to perform those

commands. By maintaining a well-defined command

database and efficiently matching user commands with

their corresponding functionalities, the system ensures

it can accurately interpret user intent and execute the

desired actions.

6. Executing the command: If the system finds a match

for the user's command in its database, it executes the

corresponding function. These functions are essentially
a set of pre-written instructions that tell the system how

to perform specific actions.

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 4

PAGE NO : 218

 Fig 5: Voice Commands Recognition Flow Chart

Fig 5: Voice Commands Recognition Flow Chart

IV. Results

The results of the exploration into the fusion of voice commands

and hand gestures for system control in human-computer

interaction (HCI) reveal promising advancements in intuitive

communication channels with computing devices.

Hand Gesture Outcomes:

Users were able to interact with digital systems using natural

hand movements, enabling tasks such as navigation, selection,

and control of applications and devices. The system's

effectiveness was evident in its ability to accurately detect and

classify a variety of hand gestures, including complex

movements and poses.

Fig 6: Hand Gesture for Switching Window

Fig 7: Hand Gesture for Set Timer

Voice Commands Outcomes:

Users interacted effortlessly with computing devices, issuing

commands for tasks like volume adjustment and application

control. The system effectively interpreted a wide range of

spoken instructions, even with variations in accent, tone, and

speech speed.

IoT Outcomes:

Integrating IoT with voice and gesture control enabled seamless

interaction with smart devices. Users effortlessly managed tasks

like controlling lights and adjusting thermostats through natural

gestures and voice commands, showcasing high responsiveness

and reliability in real-time device management.

 Fig 11: Voice Command For Increase Volume

Fig 8: Voice Command for Open APP

Devices Supporting Hardware Deployment:

Rapid advancements in embedded systems and IoT technologies

have facilitated the development of complex, cost-effective

applications. This paper examines a multi-device hardware

integration involving Arduino, ESP32 with a webcam, and the

Borodino FT232RL FTDI USB to TTL Serial Converter. The

combination of these components creates a robust platform for

applications like wireless surveillance, smart robotics, and IoT-

enabled monitoring systems, with hardware design and

communication protocols enabling versatile real-time data

acquisition and transmission.

1. Arduino:

Arduino is an open-source electronics platform that simplifies

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 4

PAGE NO : 219

electronic project development. It consists of a programmable

circuit board (microcontroller) and an Integrated Development

Environment (IDE) for coding and uploading programs. In this

setup, Arduino controls external peripherals such as motors,

sensors, and actuators.

2. ESP32 with Webcam

The ESP32 is a low-cost, low-power microcontroller with built-

in Wi-Fi and Bluetooth, making it ideal for IoT applications.

The ESP32-CAM variant comes with an integrated camera

module, which adds image and video streaming capabilities to

the setup.

The ESP32-CAM, when paired with additional modules like the

FTDI USB to TTL Serial Converter, allows seamless data

transfer to and from a host system for debugging or further

processing.

3. Roboduino FT232RL FTDI USB to TTL Serial Converter

Adapter Module

The Roboduino FT232RL FTDI USB to TTL Serial

Converter is a USB to UART interface device that facilitates

serial communication between microcontrollers (like Arduino

and ESP32) and a computer or other USB-enabled devices. It

uses TTL (Transistor-Transistor Logic) for data

transmission, which is ideal for microcontroller-based systems

where standard USB communication is not possible.

.4. Integration and Functionality

In this system, the Arduino controls peripheral devices such as

sensors, relays, or motors, while the ESP32-CAM module is

responsible for capturing images and transmitting them

wirelessly. The FT232RL FTDI USB to TTL Serial

Converter enables communication between the

ESP32/Arduino and a host system for programming or real-time

data transmission.

 Fig 9: ROBODUINO FT232RL FTDI USB to TTL

 Fig 10: ESP 32 to ROBODUINO CONNECTION

 Conclusion and Future Scope:

The integration of voice commands and hand gestures in

human-computer interaction (HCI) offers a significant step

forward in creating more intuitive communication with digital

systems. Combining speech and gesture recognition allows users

to easily perform tasks like navigation, selection, and system

control, improving efficiency and satisfaction across domains

such as gaming, healthcare, education, and smart home

automation.

Despite challenges like accuracy and privacy concerns, ongoing

research continues to enhance these technologies. The future of

this integrated HCI approach looks promising, with potential for

continued innovation and widespread adoption, providing hands-

free, natural, and tactile user experiences.

References

[1] Zahra, R., Shehzadi, A., Sharif, M. I., Karim, A., Azam, S.,

De Boer, F., Jonkman, M., & Mehmood, M. (Year).

“Camera-based interactive wall display using hand gesture

recognition”.

[2] Sánchez-Nielsen, E., Antón-Canalís, L., & Hernández-Tejera,

M. (2004). “Hand gesture recognition for human-machine

interaction”.

[3] Siby, J. E. R. A. L. D., Kader, H. I. L. W. A., & Jose, J. I. N.

S. H. A. (2015). “Hand gesture recognition. IJITR)

International Journal of Innovative Technology and

Research”, Volume, (3), 7-11.

[4] Panwar, M., & Mehra, P. S. (2011, November). “Hand gesture

recognition for human computer interaction”. In 2011

International Conference on Image Information Processing

(pp. 1-7). IEEE.

[5] Patel, Sunny, Ujjayan Dhar, Suraj Gangwani, Rohit Lad, and

Pallavi Ahire. "Hand-gesture recognition for automated

speech generation." In 2016 IEEE International Conference

on Recent Trends in Electronics, Information &

Communication Technology (RTEICT).

[6] Badi, H. (2016). Recent methods in vision-based hand gesture

recognition. International Journal of Data Science and

Analysis.

[7] Fahad, M., Akbar, A., Fathima, S., & Bari, M. A. (2023).

“Windows Based AI-Voice Assistant System using

GTTS”. Mathematical Statistician and Engineering

Applications.

[8] Bhargav, K. M., Bhat, A., Sen, S., Reddy, A. V. K., & Ashrith,

S. D. (2022, September). Voice-Based Intelligent Virtual

Assistant for Windows. In International Conference on

Innovations in Computer Science and Engineering.

[9] voice-based intelligent virtual assistant for Windows usin

python Rose Thomas, Surya V S, Tincy A Mathew, Tinu

Thomas International Journal of Engineering Research &

Technology (IJERT)

[10] Chinchane, A., Bhushan, A., Helonde, A., & Bidua, K.

SARA: A Voice Assistant Using Python. International

Journal for Research in Applied Science and Engineering

Technology, 10(6), 3567-3582.

[11] Geetha, V., Gomathy, C. K., Vardhan, K. M. S., & Kumar, N.

P. (2021). The voice-enabled personal assistant for PC using

Python. International Journal of Engineering and Advanced

Technology.

[12] Asodariya, H., Vachhani, K., Ghori, E., Babariya, B., & Patel,

T. Desktop Voice Assist

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 4

PAGE NO : 220

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 4

PAGE NO : 221

	Vinay Bodem
	Yamini Ponduru
	Lakshmi Devi. N
	lakshmidevi.n@gmail.com
	Anil Kumar Koduru
	Tulasi Ram Veerni
	Hari Prasad Ippili

