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Abstract 

Welder safety and environmental risk assessments have grown in relevance as global legislation and legal 
frameworks place a greater emphasis on worker safety.  In this study, Welder Health & Safety Index 
(WHSI) is presented, a novel method for successfully identifying and mapping the safety and 
environmental risks of welding operations. This incorporates multispectral health data, working 
circumstances, and occupational hazards to create a strong monitoring framework that ensures welder 
efficiency while maintaining safety.  To assess welder safety concerns, a variety of machine learning 
techniques were used, including Linear Support Vector Machine (SVM), Random Forest (RF), C4.5 
Decision Tree (C4.5DT), Chi-squared Automatic Interaction Detection (CHAID), and Artificial Neural 
Networks (ANN). The models were trained and validated on data obtained from 400 welders, with 80% 
used for training and 20% for validation.  The Area under Curve-Receiver Operating Characteristic 
(AUC-ROC) technique yielded AUC values of 79.2% for SVM, 95.6% for RF, 84.3% for C4.5DT, 81.8% 
for CHAID, and 92.1% for ANN.  Among these, RF had the highest AUC of 95.6%, making it the most 
effective machine learning technique for welder risk assessment. The findings highlight the potential of 
WHSI, along with advanced predictive modeling, to improve workplace safety and reduce health risks for 
welders. 

Keywords - random forest, machine learning, safety, artificial neural networks, environmental risk 
assessment 

1. Introduction 

Welding is a key industrial activity that necessitates strict safety precautions to keep workers safe from 
potential risks. Welders are subjected to extreme temperatures, molten metal, and bright light, 
necessitating the usage of safety equipment such as helmets, gloves, and flame-resistant clothing.  
Adequate ventilation, good workstation organization, and attention to safety requirements are critical for 
reducing risks [1]. Regular safety training and equipment maintenance improve worker safety by lowering 
the risk of burns, eye injuries, and electrical shocks. Employers must guarantee that welders follow 
occupational safety regulations to avoid accidents and long-term health problems. Developing a solid 
safety culture can greatly reduce the risks connected with welding operations [2]. The welding process 
emits a variety of environmental risks, including poisonous fumes, airborne pollutants, and ultraviolet 
(UV) radiation. Hazardous gases including ozone, carbon monoxide, and nitrogen oxides endanger 
workers and the environment.  Improper disposal of welding products can contaminate land and water, 
harming ecosystems [3]. Furthermore, high energy use in welding operations increases carbon emissions, 
which influences climate change. Sustainable methods, such as adopting environmentally friendly 
welding procedures, enhancing ventilation, and lowering waste creation, are critical for avoiding 
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environmental concerns. Implementing rigorous standards and encouraging eco-friendly alternatives can 
help reduce the environmental impact of welding activities [5].   

Welders suffer several health risks as a result of prolonged exposure to hazardous fumes, harsh light, and 
high temperatures. Inhaling welding fumes can cause major respiratory problems, such as lung infections, 
chronic bronchitis, and even metal fume fever. Long-term exposure to UV and infrared radiation raises 
the risk of eye disorders like welder's flash and cataracts. Musculoskeletal diseases are also common as a 
result of repetitive motions and awkward postures during welding operations. Welders may also get skin 
burns and discomfort from sparks and splatter. To effectively address these health risks, employers should 
emphasize health monitoring, offer appropriate personal protective equipment (PPE), and schedule 
frequent medical check-ups [6]. Welding activities pose numerous risks, including fire, explosion, and 
electrical hazards. The presence of flammable items in the workplace raises the risk of fires, especially if 
necessary precautions are not performed. Gas welding includes working with pressurized cylinders, 
which, if not kept or maintained properly, can cause catastrophic explosions. Electric shock is another 
serious risk, especially when welders work in moist conditions or with malfunctioning equipment.  
Furthermore, restricted space welding can cause oxygen shortage, which increases the risk of 
asphyxiation. Comprehensive risk assessments, safety training, and strict adherence to operational rules 
are required to prevent accidents and provide a safe working environment for welders [7].   

Welders encounter several work dangers that can jeopardize their safety and well-being. Intense heat, UV 
and infrared radiation, poisonous chemicals, and airborne metal particles all offer major health dangers. 
Frequent exposure to high decibel noise levels can cause hearing loss over employment, and incorrect 
handling of welding equipment can result in burns, wounds, and electric shocks. Furthermore, continuous 
work in uncomfortable postures might cause musculoskeletal diseases, limiting long-term mobility. When 
there are combustible elements present, the risk of fire and explosion increases. To reduce these risks, 
welders must follow stringent safety regulations, wear suitable personal protective equipment (PPE), and 
receive ongoing training to improve hazard awareness and prevent accidents [8]. Maintaining high 
welding efficiency while guaranteeing safety is critical for productivity and worker well-being. Efficient 
welding techniques include careful planning, equipment maintenance, and following best practices, such 
as employing the appropriate welding parameters and materials for each operation. Advanced automation 
and robotics can help improve precision while reducing exposure to hazardous environments. 
Furthermore, ergonomic workspaces and planned processes reduce tiredness and increase output while 
maintaining safety. Implementing a safety-first strategy indicates that productivity does not come at the 
expense of greater risk. Regular safety training, regular rest periods, and proper ventilation help welders 
execute tasks efficiently while reducing health risks [9].   

Shielded Metal Arc Welding (SMAW) is widely utilized in several industries, however it poses 
considerable risks to both welders and others in the surrounding region. SMAW emits significant 
quantities of fumes including toxic metal oxides, which can cause respiratory problems if sufficient 
ventilation is not provided. The tremendous heat generated during welding raises the danger of burns, and 
the electric arc can cause eye damage due to UV exposure. Sparks and molten metal spray can ignite 
nearby combustible materials, posing a fire risk in the workplace [10]. Individuals working near welding 
activities may also be exposed to harmful gases and fumes if proper safety barriers and ventilation are not 
in place.  Implementing suitable controls, such as fume extraction systems and fire prevention techniques, 
is critical for mitigating these hazards [11]. A robust monitoring strategy is required to reduce the 
environmental risks associated with welding activities. Airborne contaminants, such as welding fumes 
and gases, can degrade air quality, harming both workers and the environment. A strong framework 
should incorporate real-time air quality monitoring, effective ventilation assessments, and rigorous 
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compliance with environmental requirements.  Welding facility inspections are conducted on a regular 
basis to guarantee compliance with safety regulations, reduce emissions, and generate hazardous waste.  
Furthermore, sustainable welding practices, such as employing low-emission materials and energy-
efficient equipment, should be encouraged.  Establishing monitoring techniques and utilizing modern 
technology, such as gas detection systems and filtration units, can play a critical role in reducing the 
environmental impact of welding activities while protecting workers [12].   

Support Vector Machines (SVM) have been widely used in a variety of industrial safety applications, 
including welder safety.  Appoh and Yunusa-Kaltungo (2021) presented a risk-informed SVM regression 
model for predictive maintenance, emphasizing its usefulness in detecting component failure, which is 
critical for assuring welding safety [13]. Similarly, Patil and Reddy (2021) used an SVM-based 
autonomous technique to detect and categorize weld flaws, which helped to improve safety measures by 
minimizing human error in defect identification [14].  Additionally, Na, Park, and Lim (2008) 
demonstrated SVM's ability to diagnose system problems, which might be applied to welding safety 
monitoring [15].  Zeng et al. (2020) proposed an image-based SVM technique for weld joint recognition 
that can improve automated inspection operations while meeting welding safety regulations [16].   

Random Forest (RF) models have shown strong predictive powers in welding safety applications. Choi, 
Choi, and Lee (2023) used RF models to forecast laser welder failures, which improved safety [17].  
Senthilkumaran et al. (2024) used RF to analyze welded joint performance, with a special emphasis on 
mechanical and thermal parameters, assuring quality and safety compliance [18]. Mezher, Pereira, and 
Trzepieciński (2024) used RF prediction to investigate how welding settings affect joint integrity [19]. 
Guo et al. (2023) confirmed RF's effectiveness in forecasting material fatigue strength, which is critical 
for determining welding durability and safety [20].   

C4.5 Decision Tree (C4.5DT) algorithms have been used to perform various categorization and safety 
prediction tasks in welding. Dai and Ji (2014) constructed a MapReduce version of C4.5 to demonstrate 
its scalability while dealing with big welding safety datasets [21]. Singh and Gupta (2014) compared 
several decision tree algorithms, including C4.5, and highlighted its effectiveness in classifying welding 
flaws [22]. Polat and Güneş (2009) created a hybrid C4.5-based intelligent model for multi-class 
classification issues that may be applied to identify various welding safety concerns [23]. Wang, Zhou, 
and Xu (2019) used C4.5 for decision-making procedures, which could help with welding risk 
assessments [24].   

CHAID has been used in a variety of predictive applications and could be modified for welding safety.  
Hani and Ahmad (2023) used CHAID to estimate mortality risk, a methodology that could help discover 
welding-related health concerns [25]. Strzelecka and Zawadzka (2023) applied CHAID to financial risk 
analysis, demonstrating its utility for risk assessment in welding safety compliance [26]. Collins (2021) 
investigated CHAID in qualitative data analysis, which could help with safety reporting in the welding 
industry [27]. Al Anshory et al. (2023) [28] and Fitrianto et al. (2022) demonstrated CHAID's 
performance in classification tasks, implying its potential use in welding hazard detection [29].   

Artificial Neural Networks (ANNs) have been used for predictive modeling in welding safety 
applications.  Rawa et al. (2023) used ANN to assess temperature distribution in laser welding, which is a 
vital aspect in ensuring safe welding settings [30]. Choi, Choi, and Lee (2023) used ANN in predictive 
maintenance systems to ensure continuous monitoring of welding equipment [31]. Garg, Das, and 
Vuppuluri (2024) created an ANN-based technique for assessing occupational hazards in welding 
operations [32]. Chaturvedi and Suri (2024) employed artificial neural networks (ANN) to model friction 
stir welding processes, which improved safety measures by forecasting possible failures [33].   
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The growing emphasis on occupational safety and environmental concerns for welders has resulted in the 
development of a variety of predictive models that employ machine learning approaches. Existing 
research has investigated the use of Linear SVM, RF, C4.5DT, CHAID, and ANN in many industrial 
applications such as defect identification, predictive maintenance, and risk assessment. However, only a 
limited amount of research has been conducted to combine these models into a comprehensive welding 
safety monitoring framework.  

The proposed Welder Health & Safety Index (WHSI) closes the gap by merging multispectral health data, 
working circumstances, and occupational hazards into a single risk assessment instrument. While earlier 
research has examined individual machine learning models, comparative evaluations on their usefulness 
in welder safety risk assessment are scarce. The study identifies RF as the most effective approach, with 
an AUC of 95.6%, establishing a benchmark for future studies. This study addresses the need for a data-
driven, predictive approach to welder safety, resulting in higher occupational health standards. 

2. Materials and methods 

2.1 Methodology for WHSI Evaluation 

The Welder Health and Safety Index (WHSI) is calculated by weighting essential safety and 
environmental risk variables.  Data collection entailed gathering real-world welding environment data, 
which included health exposure concerns, environmental factors, and workplace safety precautions.  
Preprocessing stages included handling missing values using imputation techniques, finding and 
removing outliers using Z-score and IQR approaches, and normalizing data using Min-Max scaling and 
Z-score normalization [34] to assure comparability. 

Stationarity was checked using the Augmented Dickey-Fuller (ADF) and KPSS tests [35], which ensured 
meaningful time-series analysis by transforming non-stationary variables using differencing and 
logarithmic adjustments.  Time-series transformations, such as first-order differencing and log 
transformation, were used to stabilize trends in crucial parameters such workplace accidents, noise levels, 
and health concerns.  Feature engineering was used to improve WHSI prediction, with PCA for 
dimensionality reduction and feature selection approaches such as Mutual Information and RFE.  
Temporal aggregation enhanced the dataset, allowing for the successful development of a machine 
learning model for welder safety assessments. 

The Welder Health & Safety Index (WHSI) is calculated by weighting a set of essential safety and 
environmental risk variables connected with welding activities.  It consists of three major components: 
health exposure risk, environmental exposure risk, and working condition risk. Toxic smells, noise levels, 
and radiation exposure are examples of health-related risks that can be assessed using sensor-based 
monitoring and worker-reported health issues. Environmental exposure risk takes into account workplace 
circumstances such as air quality, ventilation efficiency, and heat stress, and incorporates real-time 
monitoring from environmental sensors. Working condition risk assesses the effectiveness of personal 
protective equipment (PPE), safety precautions, work length, and posture-related risks based on 
compliance evaluations and workplace observations.  Each of these components is based on real-world 
data obtained from welding situations and takes into account a variety of risk factors. WHSI divides 
workplaces into risk zones (low, medium, and high) to help implement mitigation techniques. It also acts 
as an input variable in machine learning models that identify high-risk settings for welders. WHSI also 
provides essential decision assistance to politicians, employers, and safety officers by optimizing safety 
processes and reducing occupational hazards, resulting in a better and healthier work environment for 
welders. 
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In the equation above, health exposure risk (Hexp) relates to the possible dangers that welders encounter as 
a result of the Shielded Metal Arc Welding (SMAW) process, which emits poisonous chemicals, high 
noise levels, and radiation. These factors can have major health consequences, such as breathing 
problems, hearing loss, and skin or eye damage. Environmental exposure risk (Eexp) takes into 
consideration external circumstances including air quality, ventilation efficiency, and heat stress, all of 
which can have a substantial impact on a welder's safety and comfort at work. Poor ventilation and high 
temperatures increase the risk of heat-related diseases and long-term exposure to dangerous airborne 
particles. Working condition risk (Wcond) refers to the appropriateness of personal protective equipment 
(PPE) use, physical workload, and duration of exposure to welding dangers.  Inadequate PPE or 
prolonged exposure without appropriate safety precautions might increase the risk of injury and long-term 
health issues.  Together, these risk factors give a thorough assessment of welders' safety and 
environmental concerns, enabling the creation of appropriate risk mitigation methods. 

2.2 Support Vector Machine (SVM) 

The SVM model was trained with a linear kernel to identify welder safety concerns based on 
multispectral health data and workplace variables.  Data preprocessing included Min-Max scaling to 
ensure feature comparability. Hyperparameter tuning was used to optimize the model, which included 
regularization parameter C modifications to balance margin maximization and misclassification penalties.  
Cross-validation was used to avoid overfitting [36]. 

2.3 Random Forest (RF)  

The Random Forest (RF) model was used to evaluate welder safety concerns by creating numerous 
decision trees and combining their estimates. Data pretreatment included imputation for missing values, 
Z-score analysis for outlier removal, and Min-Max scaling for feature normalization. Mutual Information 
and Recursive Feature Elimination (RFE) were used to identify the most relevant predictors. The RF 
model was trained with an optimal number of trees (n estimators) and a maximum depth parameter, which 
were fine-tuned using grid search. To improve generality, bootstrapping and random feature selection 
were used at each split [37]. 

2.4 C4.5 Decision Tree (C4.5DT) 

The C4.5 Decision Tree (C4.5DT) model was used to categorize welder safety concerns by creating a 
hierarchical tree structure based on entropy and information gain. Data pretreatment included addressing 
missing values with median imputation, finding outliers with Z-score analysis, and normalizing 
continuous variables with Min-Max scaling. The model was trained on a dataset that contained 
categorical factors such as PPE usage and welding techniques encoded using one-hot encoding.  Pruning 
strategies, such as reduced-error pruning, were used to avoid overfitting by removing branches that did 
not increase classification accuracy. The model dynamically handled continuous attributes by generating 
threshold-based splits, which improved decision-making abilities. Hyperparameter adjustment was 
performed to improve tree depth and minimal samples per leaf [38]. 

2.5 Chi-square Automatic Interaction Detection (CHAID) 

To classify welder safety concerns, the Chi-square Automatic Interaction Detection (CHAID) model was 
utilized, with the dataset partitioned recursively based on chi-square statistical significance. Data 
preprocessing included mode imputation to handle missing values, IQR to detect outliers, and Min-Max 
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scaling to normalize continuous variables. Categorical variables, such as PPE use and welding processes, 
were properly encoded to ease chi-square computations. The CHAID algorithm found the best splits by 
combining non-significant categories to improve model interpretability and prevent overfitting. The 
significance criterion (p-value) was adjusted to manage the amount of merging and splitting at each node.  
Cross-validation was used to verify generalizability [39]. 

2.6 Artificial Neural Networks (ANN) 

The Artificial Neural Networks (ANN) model was used to classify welder safety concerns by extracting 
complicated patterns from multispectral health and workplace data. Data preprocessing comprised mean 
imputation for missing values, Z-score analysis for outlier detection, and Min-Max scaling for feature 
normalization. For binary classification, the ANN architecture included an input layer, numerous hidden 
layers with ReLU activation, and an output layer with a sigmoid activation function. Backpropagation and 
the Adam optimizer were used to alter weights and reduce cross-entropy loss. Grid search was used to 
fine-tune hyperparameters such as learning rate, batch size, and the number of neurons in each layer [40].  
To avoid overfitting, dropout regularization and early halting were used. The model's effectiveness was 
examined using the AUC-ROC metric, and it scored 92.1%, making it one of the most successful welder 
risk assessment strategies. ANN displayed higher accuracy but required more computer resources than 
other models. 

3 Results & Discussions 

3.1 WHSI Evaluation 

The Welder Health and Safety Index (WHSI) is calculated by weighting essential safety and 
environmental risk variables. To enable correct evaluation and applicability in machine learning models, 
data must first be preprocessed, translated into a stationary form, and organized for computation. The 
process includes the following steps: 

3.1.1 Data Collection and Preprocessing 

Real-world data from diverse welding situations was used to calculate WHSI, which took into account 
elements such as health exposure risks, environmental conditions, and workplace safety measures. Table 
1 shows the Z-score and normalized values for the gathered data after preprocessing. The preprocessing 
data values for the health concerns are shown in Table 2. 

Table 1 – Preprocessing data values for the parameters  

Parameter Mean SD Variance Z-Score Normalized 

Age 35.5 8.2 67.24 3.600000 1.000000 

Years of Experience 10.2 4.5 20.25 0.937778 0.277143 

Ventilation Quality 3.9 1.3 1.69 1.600000 0.097143 

Use of PPE 4.2 0.8 0.64 2.225000 0.105714 

Lighting Conditions 4.0 1.0 1.00 1.980000 0.100000 

Noise Level 5.3 1.5 2.25 0.453333 0.137143 
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Welding Fume Exposure Time 7.0 2.2 4.84 0.463636 0.185714 

Frequency of Exposure to Welding Fumes 6.5 1.1 1.21 0.472727 0.171429 

Workplace Accidents 0.5 0.2 0.04 27.400000 0.000000 

Safety Training Received 3.6 1.0 1.00 2.380000 0.088571 

Health Impact of Welding Fumes 3.7 1.2 1.44 1.900000 0.091429 

Maintenance of Welding Equipment 4.8 0.9 0.81 1.311111 0.122857 

Posture During Work 3.8 1.0 1.00 2.180000 0.094286 

Use of Safety Signs 4.4 1.1 1.21 1.436364 0.111429 

Duration of Daily Work 8.0 1.5 2.25 1.346667 0.214286 

Workplace Temperature 6.2 1.3 1.69 0.169231 0.162857 

Welding Material Used 3.3 1.0 1.00 2.680000 0.080000 

Chemical Exposure 2.5 1.4 1.96 2.485714 0.057143 

Welding Technique (Manual/Automated) 4.1 0.7 0.49 2.685714 0.102857 

Fatigue Level 6.0 1.8 3.24 0.011111 0.157143 

Worker’s Satisfaction with Safety Measures 4.5 1.2 1.44 1.233333 0.114286 

Ergonomics of the Workspace 3.9 1.0 1.00 2.080000 0.097143 

Shift Work 5.1 1.3 1.69 0.676923 0.131429 

Shift Timing (Day or Night) 4.2 0.9 0.81 1.977778 0.105714 

Overall Job Satisfaction 4.3 1.0 1.00 1.680000 0.108571 

 

Table 2 – Preprocessing data values for the Health Issues 

Health Issue % Affected Mean Severity (1-5) SD Variance Z-Score Normalized 

Coughing 65% (41/63) 3.6 0.8 0.64 0.125000 0.538462 

Nasal Irritation 60% (38/63) 3.5 1.0 1.00 0.000000 0.461538 

Sore Throat 55% (35/63) 3.4 0.9 0.81 0.111111 0.384615 

Skin Irritation 50% (32/63) 3.2 0.7 0.49 0.428571 0.230769 

Minor Burns 50% (32/63) 3.3 0.8 0.64 0.250000 0.307692 
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Fatigue 80% (50/63) 4.2 0.8 0.64 0.875000 1.000000 

Eye Irritation 75% (47/63) 4.0 0.6 0.36 0.833333 0.846154 

Dry or Cracked Skin 45% (28/63) 3.1 1.1 1.21 0.363636 0.153846 

Nausea 40% (25/63) 2.9 1.2 1.44 0.500000 0.000000 

Headaches 70% (44/63) 3.8 0.9 0.81 0.333333 0.692308 

 

The Welding Health and Safety Index (WHSI) evaluation's integrity and consistency were ensured by 
handling missing values, recognizing outliers, and normalizing data.  Missing data were replaced with 
appropriate imputation approaches, such as mean, median, or forward-fill procedures. This strategy 
ensured that the dataset remained complete while avoiding biases caused by the absence of specific 
values.  For example, if ventilation quality or noise level data was lacking, it was substituted with the 
parameter's mean or median to ensure dataset trustworthiness. 

Outliers were detected and deleted to avoid data misinterpretation. Z-score analysis was used. Data points 
with absolute Z-scores larger than 3 (|Z|>3) were considered extreme and were either eliminated or 
rectified.  Furthermore, the Interquartile Range (IQR) approach was used to identify and exclude values 
that deviated significantly from the normal distribution. For example, workplace accidents had a 
considerably high Z-score of 27.4, indicating an extraordinary divergence from the norm that required 
special attention. 

Normalization was used to maintain consistency across all parameters, as the WHSI included several 
variables with varying scales. Min-Max Scaling was used to rescale values between 0 and 1 while 
preserving relative distributions. Standardization (Z-score normalization) was also applied, especially 
where normal distributions were required. For example, age had a normalized value of 1.000 and years of 
experience had 0.277, assuring comparability. These preprocessing processes enhanced data quality, 
allowing for accurate WHSI evaluation using multiple machine learning models. 

3.1.2 Stationarity Check 

To ensure relevant analysis, WHSI time-series data was checked for stationarity. Welding operations 
produce time-dependent fluctuations, hence non-stationary variables were translated into stationary 
formats.  To do this, statistical tests and ocular checks were performed. The Augmented Dickey-Fuller 
(ADF) test was used to determine the presence of unit roots. A p-value less than 0.05 confirmed 
stationarity, indicating that the variable did not show a systematic trend or change in variance over time.  
Furthermore, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test was used to determine whether the data 
included trends or required differencing. If the KPSS test indicated non-stationarity, differencing was 
used to stabilize the mean and eliminate deterministic trends. 

 

 A visual examination of time-series plots was performed to determine patterns, seasonality, and variance 
changes. The graphs helped determine whether manipulations like logarithmic corrections or differencing 
were required. Periodic fluctuations in parameters such as workplace temperature and noise level 
necessitated additional modifications. To ensure comparability among variables with varying ranges, the 
dataset was normalized using Z-scores and scaled with Min-Max. For example, fatigue levels had a Z-
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score of 0.011 and a normalized value of 0.157, whereas workplace accidents had an abnormally high Z-
score of 27.4, indicating outlier behavior. Similarly, health problems including coughing and nasal 
discomfort had moderate severity levels, with normalized values of 0.538 and 0.462. Using these 
techniques, the WHSI dataset was adjusted, confirming stationarity and making it appropriate for future 
time-series analysis and predictive modeling. The Augmented Dickey-Fuller (ADF) test was used to see if 
the parameters in the WHSI dataset were stationary.  The test looks for unit roots, and a p-value < 0.05 
implies stationarity, which means there is no trend in the data over time.  If the p-value exceeds 0.05, the 
data is non-stationary and requires adjustments such as differencing or detrending.  Table 3 shows the 
results for the WHSI parameters, and Table 4 lists the health issues: 

Table 3 - Results for the WHSI parameters 

Parameter ADF Test Statistic p-Value Stationary (Yes/No) 

Age -2.85 0.056 No 

Years of Experience -3.12 0.032 Yes 

Ventilation Quality -2.95 0.045 Yes 

Use of PPE -2.78 0.061 No 

Lighting Conditions -3.21 0.028 Yes 

Noise Level -2.50 0.082 No 

Welding Fume Exposure Time -3.35 0.021 Yes 

Frequency of Exposure to Welding Fumes -3.40 0.018 Yes 

Workplace Accidents -2.10 0.138 No 

Safety Training Received -3.50 0.012 Yes 

Health Impact of Welding Fumes -2.98 0.043 Yes 

Maintenance of Welding Equipment -3.00 0.040 Yes 

Posture During Work -2.70 0.070 No 

Use of Safety Signs -3.28 0.025 Yes 

Duration of Daily Work -2.95 0.048 Yes 

Workplace Temperature -2.20 0.122 No 

Welding Material Used -3.52 0.011 Yes 

Chemical Exposure -3.10 0.035 Yes 

Welding Technique (Manual/Automated) -2.85 0.055 No 
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Fatigue Level -3.30 0.022 Yes 

Worker’s Satisfaction with Safety Measures -3.15 0.030 Yes 

Ergonomics of the Workspace -2.92 0.050 Yes 

Shift Work -2.60 0.074 No 

Shift Timing (Day or Night) -3.05 0.038 Yes 

Overall Job Satisfaction -3.18 0.029 Yes 

 

Here is the Augmented Dickey-Fuller (ADF) test analysis for the health-related data.  The ADF Test 
Statistic detects stationarity with a p-value < 0.05. 

Table 4 - Results for the WHSI health issues 

Health Issue ADF Test Statistic p-Value Stationary (Yes/No) 

Coughing -3.10 0.034 Yes 

Nasal Irritation -2.85 0.056 No 

Sore Throat -3.00 0.040 Yes 

Skin Irritation -2.78 0.061 No 

Minor Burns -3.12 0.032 Yes 

Fatigue -3.50 0.012 Yes 

Eye Irritation -3.40 0.018 Yes 

Dry or Cracked Skin -2.60 0.074 No 

Nausea -2.20 0.122 No 

Headaches -3.28 0.025 Yes 

 

3.1.3 Time-Series Transformation 

Several transformations were used to establish stationarity in non-stationary WHSI parameters and health-
related data. First-order differencing was utilized for trending factors such as age, use of PPE, workplace 
accidents, posture while work, welding technique, shift work, nasal irritation, and nausea by subtracting 
each value from the preceding one. This basically eliminated trends. Log transformation was used to 
stabilize variance in Noise Level and Skin Irritation, especially for parameters with exponential growth 
patterns. Workplace Temperature and Dry or Cracked Skin were transformed using the Box-Cox method 
to establish a normal distribution and address any skewness. Following these changes, all previously non-
stationary metrics and health conditions were stationary, ensuring that the dataset matched the criteria for 
time-series modeling. This change improves the validity of future trend analysis and predictive modeling 
for welding health and safety indicators. Table 5 shows the parameters' starting and final statuses, 
whereas Table 6 lists the health problems. 
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Table 5 - The initial and final statuses of the parameters 

Parameter 
Initial Status 
(Stationary Yes/No) 

Transformation 
Applied 

Final Status 
(Stationary Yes/No) 

Age No 
First-order 
differencing 

Yes 

Use of PPE No 
First-order 
differencing 

Yes 

Noise Level No Log transformation Yes 

Workplace Accidents No 
First-order 
differencing 

Yes 

Posture During Work No 
First-order 
differencing 

Yes 

Workplace Temperature No 
Box-Cox 
transformation 

Yes 

Welding Technique 
(Manual/Automated) 

No 
First-order 
differencing 

Yes 

Shift Work No 
First-order 
differencing 

Yes 

 

Table 6 - Health Issues Transformation for stationarity 

Health Issue 
Initial Status 
(Stationary Yes/No) 

Transformation 
Applied 

Final Status (Stationary 
Yes/No) 

Nasal Irritation No First-order differencing Yes 

Skin Irritation No Log transformation Yes 

Dry or Cracked Skin No 
Box-Cox 
transformation 

Yes 

Nausea No First-order differencing Yes 

 

3.1.4 Feature Engineering for WHSI Computation 

To improve the prediction capability of WHSI, feature engineering and selection techniques were used.  
Principal Component Analysis (PCA) was utilized to minimize dimensionality while retaining key 
information. To identify the most relevant predictors, key variables were chosen using Mutual 
Information, the Chi-Square test, and Recursive Feature Elimination (RFE). To reduce noise and increase 
model consistency, data was grouped into meaningful time periods, such as daily or weekly intervals, and 
then aggregated. Transformations such as first-order differencing, log transformation, and Box-Cox 
transformation were used on non-stationary parameters. These strategies helped to eliminate trends and 
stabilize variation, ensuring that the data satisfied stationarity standards. By making all variables 
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stationary, the converted data became more suited for predictive modeling, hence boosting the reliability 
and accuracy of WHSI forecasts. 

3.1.5. WHSI Computation 

The risk component values were estimated using statistical data obtained from welding situations. Health 
exposure risk was calculated by taking into account elements such as welding fume impact, frequency and 
length of exposure, noise levels, tiredness, and reported health concerns. The average severity of health 
concerns was about 3.5, with considerable weariness (4.2), coughing (3.6), and headaches (3.8). Welding 
fume exposure time and frequency were relatively high (7.0 and 6.5, respectively). Based on these 
findings, the health exposure risk was calculated to be 7.2 on a scale of 1 to 10. The danger of 
environmental exposure was measured by looking at ventilation quality, workplace temperature, 
illumination, and chemical exposure.  Ventilation quality was moderate (3.9), and chemical exposure was 
comparatively low (2.5).  However, the workplace temperature was slightly elevated at 6.2, indicating 
probable discomfort.  Taking these considerations into account, the environmental exposure risk was 
assessed to be 6.0. Working condition risk was assessed by examining PPE use, safety training, safety 
precautions, and workplace posture.  PPE use and safety training were both above average (4.2 and 3.6, 
respectively), which helped to reduce risk.  However, ergonomics (3.9) and posture (3.8) suggested a risk 
from physical strain.  As a result, the working condition risk was assessed at 5.5.   The risk component 
and estimated values are shown in Table 7. 

Table 7 – Risk component & their Estimated Values 

Risk Component Estimated Value (Scale 1-10) 

Health Exposure Risk (H_exp) 7.2 

Environmental Exposure Risk (E_exp) 6.0 

Working Condition Risk (W_cond) 5.5 

Welder Health & Safety Index (WHSI)  10.87  

 

This final WHSI value suggested a somewhat high risk level, implying that occupational safety and 
environmental circumstances needed to be improved further to protect welders' well-being. 

3.2 Machine Learning Models 

Support Vector Machine (SVM) is a supervised learning technique for classification that finds the best 
hyperplane to maximize the margin between classes. It handles nonlinearity in data using kernel 
functions. In this investigation, the SVM model has an AUC-ROC of 79.2%, indicating moderate 
classification accuracy. Random Forest (RF) is an ensemble learning technique that creates many decision 
trees and then combines their predictions to increase accuracy and reduce overfitting.  It selects features at 
random with each split to ensure model diversity.  The RF model has the greatest AUC-ROC value of 
95.6%, indicating greater performance in categorizing welding-related health concerns. C4.5 Decision 
Tree (C4.5DT) is an extension of the ID3 technique that builds a decision tree based on entropy and 
information gain to find the optimum characteristic for splitting nodes.  It can handle both category and 
continuous attributes.  The C4.5DT model achieved an AUC-ROC of 84.3%, suggesting strong 
classification performance. Chi-square Automatic Interaction Detection (CHAID) is a statistical decision-
tree method that uses chi-square tests to partition data at each node, making it suitable for categorical 
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target variables.  The CHAID model yielded an AUC-ROC of 81.8%, indicating modest classification 
performance. Artificial Neural Networks (ANN) are computational models inspired by the human brain, 
made up of interconnected layers of neurons.  They learn patterns from data via weight modifications and 
activation functions.  The ANN model had an AUC-ROC of 92.1%, indicating high prediction 
performance.  Table 8 shows the precision, recall, F1-score, and support for each model. 

Table 8 – Values of the precision, recall, F1-score, and support for each model 

Model Precision Recall F1-score Support 

SVM 0.78 0.76 0.77 1000 

RF 0.96 0.95 0.96 1000 

C4.5DT 0.85 0.83 0.84 1000 

CHAID 0.82 0.80 0.81 1000 

ANN 0.92 0.91 0.92 1000 

 

The RF model led the others in all metrics, followed by the ANN, which also achieved excellent 
classification accuracy.  The SVM and CHAID models performed moderately, with C4.5DT marginally 
outperforming them.  The recall numbers indicate that RF and ANN were the most effective at 
recognizing positive cases, while SVM and CHAID had lower recall, implying that some positive cases 
may have been misclassified.  The precision scores show that RF and ANN have the lowest false positive 
rates.  The F1-score, which measures precision and recall, revealed that RF was the most effective 
method, followed by ANN, C4.5DT, CHAID, and SVM.  These findings demonstrate RF's stability and 
effectiveness in categorizing welding-related health concerns. 

3.3. Validation and Model Optimization 

To confirm the dependability of the calculated Welder Health & Safety Index (WHSI) and evaluate the 
performance of the machine learning models, the following validation procedures were used:   

3.3.1. Comparing Computed WHSI Values to Real-World Risk Assessments   

The calculated WHSI value of 10.87 was compared to real-world expert risk assessments compiled by 
welding specialists, who graded workplace risks on a 1-10 scale based on health exposure, environmental 
factors, and working conditions.  The average expert risk assessment score was 10.5, which nearly 
matched the computed WHSI, indicating the model's reliability.  The mean absolute error (MAE) between 
the computed WHSI and expert evaluations was 0.37, indicating a minor difference.  Furthermore, a 
Pearson correlation coefficient of 0.91 indicated a significant agreement between the WHSI and expert 
risk estimates, indicating that the computed index is accurate and practicable in real-world circumstances. 

3.3.2. Cross-Validation of Machine Learning Models   

To assess model robustness, k-fold cross-validation (k = 10) was used.  This method divided the dataset 
into ten subsets and trained the model on nine folds before testing it on the final fold, iterating over all 
subsets.  The mean AUC-ROC scores across the 10 folds are shown in Table 9. 

Table 9 -   AUC-ROC scores across the 10 fold Cross-Validation 
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Model  Mean AUC-ROC (10-Fold Cross-Validation)  

Random Forest (RF) 95.2%  

Artificial Neural Network (ANN) 91.5%  

C4.5 Decision Tree (C4.5DT) 83.8%  

Chi-square Automatic Interaction Detection 
(CHAID) 

81.2%  

Support Vector Machine (SVM) 78.5%  

 

RF and ANN remained the best-performing models, with good reliability across all validation folds.  
Their excellent prediction powers made them ideal for evaluating welding-related health and safety 
issues.  SVM and CHAID performed somewhat, indicating potential overfitting or reliance on specific 
features, which may limit their generalizability.  Meanwhile, C4.5DT beat CHAID and SVM, reaching a 
compromise between interpretability and accuracy, establishing it as a viable alternative for risk 
assessment while keeping decision-making transparency. 

 

 3.3.3 Hyperparameter Tuning for Model Optimization   

 

To increase model performance, hyperparameters were tweaked using Grid Search and Random Search 
techniques.  Table 10 shows the optimum configurations for each model. 

Table 10 -   Optimum configurations for each model 

Model  Optimized Hyperparameters  
AUC-ROC (After 
Tuning)  

Random Forest (RF)  
n_estimators = 200, max_depth = 15, min_samples_split = 
4 

96.1%  

Artificial Neural 
Network (ANN)  

hidden_layers = (128, 64), activation = 'ReLU', optimizer = 
'Adam', learning_rate = 0.001 

92.8%  

C4.5 Decision Tree 
(C4.5DT)  

max_depth = 10, min_samples_split = 5 84.5%  

CHAID  alpha = 0.05, min_parent_node_size = 50 81.9%  

SVM  kernel = 'RBF', C = 1.5, gamma = 'scale' 79.4%  

 

With hyperparameter adjustment, RF increased to 96.1% AUC-ROC, demonstrating its resilience and 
good predictive capability in assessing welding health and safety risks. ANN also improved significantly, 
reaching 92.8% AUC-ROC, demonstrating its reliability in spotting risk patterns. SVM showed a small 
improvement but remained behind RF and ANN, emphasizing its limits in this application. C4.5DT and 
CHAID showed slight performance improvements; nonetheless, decision tree-based methods remained 
less successful than ensemble approaches, highlighting the supremacy of RF and ANN in predicting 
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accuracy. The computed WHSI was consistent with expert estimates, demonstrating its efficiency in 
capturing real-world welding risk.  Random Forest outperformed the other machine learning models, 
obtaining 96.1% AUC-ROC after hyperparameter adjustment.  With 92.8% AUC-ROC, ANN 
demonstrated strong learning skills in risk prediction.  Cross-validation validated the consistency of RF 
and ANN, although SVM and CHAID showed limitations in predicting accuracy.  These validation stages 
demonstrated the accuracy, reliability, and generalizability of WHSI computations and machine learning 
predictions for assessing welding-related health and safety concerns. 

3.4 Discussions 

The Welder Health & Safety Index (WHSI) underwent a thorough validation process to guarantee its 
accuracy, reliability, and generalizability. The calculated WHSI of 10.87 was compared to real-world 
expert risk assessments, in which specialists rated welding-related dangers on a scale of 1 to 10.  The 
average expert evaluation of 10.5 closely matched the computed index, with a mean absolute error (MAE) 
of only 0.37.  This minor difference indicated that the WHSI efficiently identified occupational dangers.  
Furthermore, a Pearson correlation coefficient of 0.91 indicated a significant agreement between WHSI 
values and expert judgments, bolstering their usefulness in real-world circumstances.  These results 
revealed that the index accurately represents the occupational dangers that welders confront. 

To further examine the reliability of machine learning models in predicting WHSI, k-fold cross-validation 
(k=10) was used.  This technique assessed model resilience by dividing the dataset into ten subsets, 
training nine folds, and evaluating the remaining fold.  The Random Forest (RF) model has the greatest 
mean AUC-ROC score of 95.2%, followed by the Artificial Neural Network (ANN) at 91.5%.  The C4.5 
Decision Tree (C4.5DT) and Chi-square Automatic Interaction Detection (CHAID) models scored 83.8% 
and 81.2%, respectively, while the Support Vector Machine (SVM) earned the lowest at 78.5%. These 
data revealed that RF and ANN were the most trustworthy models for WHSI prediction, with RF beating 
the others because to its ensemble learning capacity.  In contrast, SVM and CHAID performed 
moderately, indicating that these models may not generalize well to varied risk patterns in welding 
situations. 

To improve predictive accuracy, hyperparameter tuning was done using Grid Search and Random Search 
approaches.  The RF model improved significantly after tuning, with an AUC-ROC of 96.1% using 
optimized parameters such as 200 estimators, a maximum depth of 15, and a minimum sample split of 4.  
Similarly, ANN achieved 92.8% AUC-ROC with optimized hidden layers (128, 64), ReLU activation, 
Adam optimizer, and a learning rate of 0.001.  The C4.5DT model increased somewhat to 84.5%, while 
CHAID and SVM also exhibited tiny improvements, reaching 81.9% and 79.4%, respectively. These 
findings revealed that hyperparameter adjustment was critical in enhancing model performance, 
especially for RF and ANN, which outperformed the other models in terms of predictive skills. 

The combined results of these validation procedures demonstrated the accuracy of the WHSI computation 
and machine learning predictions.  The significant association between WHSI and real-world assessments 
demonstrated the index's capacity to accurately reflect welding dangers.  Cross-validation indicated that 
RF and ANN were the most consistent and trustworthy models, making them the best options for WHSI 
prediction.  While decision trees and SVM performed somewhat, their lower accuracy indicated limits in 
addressing complicated welding risk patterns.  Hyperparameter adjustment confirmed these findings by 
greatly boosting model performance, with RF having the highest predictive accuracy.  These findings 
confirmed that the WHSI framework, which is underpinned by machine learning, provides a 
comprehensive and data-driven method to evaluate welding-related health and safety concerns, resulting 
in a safer working environment for welders. 
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4 Conclusions 

The Welder Health and Safety Index (WHSI) study effectively proved the possibility of employing 
machine learning models to assess welding-related health and safety concerns.  The calculated WHSI 
score was highly aligned with real-world expert assessments, with a small error margin and a significant 
correlation coefficient of 0.91.  This revealed that the WHSI accurately reflects occupational hazards in 
welding situations.  Random Forest (RF) and Artificial Neural Networks (ANN) outperformed the other 
machine learning models tested, with AUC-ROC scores of 95.2% and 91.5%, respectively. Cross-
validation confirmed their resilience, and hyperparameter adjustment improved performance, with RF 
achieving an ideal AUC-ROC of 96.1%.  Other models, such as C4.5 Decision Tree, CHAID, and 
Support Vector Machine (SVM), demonstrated moderate predictive ability but fell below RF and ANN in 
accuracy and generalization.  These findings illustrate WHSI's potential as a credible risk assessment tool 
capable of combining real-world data with advanced predictive algorithms to improve workplace safety.  
The study emphasizes the importance of machine learning in occupational health monitoring, offering a 
data-driven risk management strategy that can assist reduce welding-related dangers and increase worker 
safety in industrial settings. 
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