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1. Introduction

Let A denote the family of normalized functions of the form

f(ζ) = ζ +

∞∑
n=2

anζ
n, (1.1)

which are analytic in the open unit disc U = {ζ : ζ ∈ C and |ζ| < 1} and gratify the

normalization conditions f(0) = 0 and f ′(0) = 1.

A function f in A is said to be univalent in U. We denote by S the subclass of A consisting

of univalent functions in U.

Let f and g be two analytic functions in U then function g is said to be subordinate to f if

there exists an analytic function ω in the unit disk U with w(0) = 0 and |ω(z)| < 1 such that

g(ζ) = f(w(ζ)), (ζ ∈ U). (1.2)

We denote this subordination by g ≺ f.

In particular, if f is univalent in U. The above subordination is equivalent to

f(0) = g(0) and f(U) ⊆ g(U).

The theory of q-calculus plays an important role in many fields of mathematical, physical

and engineering sciences. It has many applications in the field of special functions and other
1
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areas. The first application of the q-calculus was introduced by Jackson [13], [14]. Recently,

a new generalization has been presented for the q-derivatives denoted by (p, q)-calculus. One

may refer to [1, 3], [4], [5, 7, 15, 19, 21]. Let us recall some basic notations of (p, q)-calculus.

For 0 < q < p ≤ 1 the (p, q)−derivative operator for the function f of the form (1.1) is defined

by

Dp,qf(ζ) =


f(pζ)−f(qζ)
ζ(p−q) , ζ 6= 0

f ′(0), ζ = 0.

(1.3)

From (1.3) we deduce that

Dp,q(f(ζ) + g(ζ)) = Dp,qf(ζ) +Dp,qg(ζ). (1.4)

Dp,q(cf(ζ)) = cDp,qf(ζ)

and the (p, q)-derivative of the function h(ζ) = ζn, is as follows

Dp,qh(ζ) = [n]p,qζ
n−1 (1.5)

where

[n]p,q =
pn − qn

p− q
, p 6= q (1.6)

which is a natural generalization of the q-number.

Clearly, we note that [n]1,q = [n]q = 1−qn
1−q and limq→1[n]1,q = n.

Dp,qh(ζ) = h′(ζ) as p = 1 and q → 1−, where h′(ζ) denotes the ordinary derivative of the

function h(ζ) with respect to ζ.

The (p, q)-derivative operator of the function f , is defined as

Dp,qf(ζ) = 1 +
∞∑
n=2

[n]p,qanζ
n−1, ζ 6= 0, (1.7)

We now introduce the following classes of analytic functions by using principal of subordina-

tion and the (p, q)-derivative operator :

Dk
δ,λ,l,p,qf(ζ) = ζ +

∞∑
n=2

(
(l + δ − λ) + (1− δ + λ)[n]p,q

l + 1

)k
anζ

n (1.8)

where δ, λ, l ≥ 0, k ∈ N ∪ {0}.

Let

Dk
δ,λ,l,p,qf(ζ) = ζ +

∞∑
n=2

L(δ, λ, l, n)[n]p,qanζ
n

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 4

PAGE NO : 54
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where

L(δ, λ, l, n)[n]p,q =

(
(l + δ − λ) + (1− δ + λ)[n]p,q

l + 1

)k
.

As p = 1 and q → 1−, by specializing the parameters the new (p, q)-differential operator

Dk
δ,λ,l,p,q reduces to various operators studied by Al-oboudi[6], Catas[8], Cho and Srivas-

tava[9],Latha and Shilpa [16], Maslina Darus and Rabha W Ibrahim [18], Salagean [20] and

Uralegaddi and Somanatha[22]. For example letting q → 1−, δ = λ, l = 0 we get Salagean

operator and letting q → 1−, δ = 1, l = 0 we get Al-oboudi operator.

Let P denote the class of all functions ϕ(ζ) which are analytic and univalent in U and for

which ϕ(ζ) is convex with ϕ(0) = 1 and <{ϕ(ζ)} > 0 for all ζ ∈ U.

By using principal of subordination and the (p, q)-derivative operator Dk
δ,λ,l,p,q, we now in-

troduce the following classes of analytic functions:

Definition 1.1. A function f(ζ) belongs to the class Rkδ,λ,l,p,q(ϕ) if it satisfies the following

subordination condition

Dn
δ,λ,l,p,qf(ζ) ≺ ϕ(ζ) (1.9)

where ϕ(ζ) ∈ P and 0 < q < p ≤ 1.

Definition 1.2. A function f(ζ) belongs to the class Nk
δ,λ,l,p,q(ϕ) if it satisfies the following

subordination condition

(1− α)
f(ζ)

ζ
+ αDk

δ,λ,l,p,qf(ζ) ≺ ϕ(ζ) (1.10)

where ϕ(ζ) ∈ P , 0 ≤ α ≤ 1 and 0 < q < p ≤ 1.

In order to derive our main results, we need to following lemmas:

Lemma 1.3. [12] If p ∈ P then |cn| ≤ 2 for each n, where P is the family of all functions p

analytic in U for which

<(p(ζ)) > 0 and p(ζ) = 1 + c1ζ + c2ζ
2 + · · ·

for ζ ∈ U.

Lemma 1.4. [12] Let p ∈ P be of the form p(ζ) = 1 + c1ζ + c2ζ
2 + · · ·. Then∣∣∣∣c2 − c21

2

∣∣∣∣ ≤ 2− |c1|
2

2
and |cn| ≤ 2, n ∈ N.
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Lemma 1.5. [17] If p(ζ) = 1 + c1ζ + c2ζ
2 + · · ·, ζ ∈ U is a function with positive complex

number, then ∣∣c2 − µc21∣∣ ≤ 2 max{1; |2µ− 1|}.

The result is sharp for the function given by

p(ζ) =
1 + ζ2

1− ζ2
and p(ζ) =

1 + ζ

1− ζ
, ζ ∈ U.

The Fekete-Szegö problem is to find the coefficient estimates for the second and third

coefficients of functions in any class of analytic functions having a specific geometric prop-

erties [11].In this paper, we obtain Fekete-Szegö inequalities for the classes Rkδ,λ,l,p,q(ϕ) and

Nk
δ,λ,l,p,q(ϕ).

2. Main Results

Theorem 2.1. Let ϕ(ζ) = 1 + B1ζ + B2ζ
2 + · · · ∈ P with B1 6= 0. If f(ζ) belongs to the

class Rkδ,λ,l,p,q(ϕ) then

|a3 − µa22| ≤
B1

L(δ, λ, n)([3]p,q)[3]p,q
max

{
1−

∣∣∣∣B2

B1
− L(δ, λ, n)([3]p,q)[3]p,qµB1

L(δ, λ, n)([2]p,q)[2]2p,q

∣∣∣∣} (2.1)

where µ is a complex number and 0 < q < p ≤ 1. The result is sharp.

Proof. If f(ζ) ∈ Rkδ,λ,l,p,q(φ), by Definition (1.1) there is a Schwarz function ω(ζ) in U such

that

Dk
δ,λ,l,p,q(f(ζ)) = ϕ(ω(ζ)). (2.2)

Now we define the function

p(ζ) =
1 + ω(ζ)

1− ω(ζ)
= 1 + p1ζ + p2ζ

2 + · · ·. (2.3)

Since ω(ζ) is a Schwarz function, we have R{p(ζ)} > 0 and p(0) = 1. Let

g(ζ) = Dk
δ,λ,l,p,q(ζ) = 1 + d1ζ + d2ζ

2 + · · ·. (2.4)

By using equations (2.2), (2.3) and (2.4) we obtain

g(ζ) = ϕ

(
p(ζ)− 1

p(ζ) + 1

)
since

p(ζ)− 1

p(ζ) + 1
=

1

2

(
p1ζ +

(
p2 −

p21
2

)
ζ2 +

(
p3 +

p31
4
− p1p2

)
ζ3 + · · ·

)

Zhuzao/Foundry[ISSN:1001-4977] VOLUME 28 ISSUE 4

PAGE NO : 56
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which yields

ϕ

(
p(ζ)− 1

p(ζ) + 1

)
= 1 +

1

2
B1p1ζ +

(
1

2
B1

(
p2 −

p21
2

)
+

1

4
B2p

2
1

)
ζ2 + · · ·. (2.5)

By equations (2.4) and (2.5) we obtain

d1 =
1

2
B1p1

d2 =
1

2
B1

(
p2 −

p21
2

)
+

1

4
B2p

2
1.

A simple computation gives

Dn
δ,λ,l,p,q(f(ζ)) = 1 + L(δ, λ, l, n)([2]p,q)[2]p,qa2ζ + L(δ, λ, l, n)([3]p,q)[3]p,qa3ζ

2 + · · ·

Using (2.4), we get

d1 = L(δ, λ, l, n)([2]p,q)[2]p,qa2

d2 = L(δ, λ, l, n)([3]p,q)[3]p,qa3

comparing the coefficients of ζ ad ζ2 and simplifying we get

a2 =
B1p1

2L(δ, λ, l, n)([2]p,q)[2]p,q

and

a3 =
B1

2L(δ, λ, l, n)([3]p,q)[3]p,q

(
p2 −

p21
2

)
+

B2
2p

2
1

4L(δ, λ, l, n)([3]p,q)[3]p,q

hence

a3 − µa22 =
B1

2L(δ, λ, l, n)([3]p,q)[3]p,q
(p2 − γp21)

where

γ =
1

2

(
1− B2

B1
− L(δ, λ, l, n)([3]p,q)[3]p,qµB1

[L(δ, λ, l, n)([2]p,q)[2]p,qα]2

)
�

Hence by Lemma (1.5), the result follows.

Note that, for suitable choices of parameters in Theorem (2.1) we get the following Corollary

derived in [2].

Corollary 2.2. Let ϕ(ζ) = 1 + B1ζ + B2ζ
2 + · · · ∈ P , with B1 6= 0. If f(ζ) given by (1.1)

belongs to the class R(q)(ϕ) and µ is a complex number, then

|a3 − µa22| ≤
B1

[3]p,q
max

(
1−

∣∣∣∣B2

B1
− [3]p,qµB1

[2]2p,q

∣∣∣∣) (2.6)
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The result is sharp.

Similarly, we can obtain upper bound for the Fekete-Szegö inequalities for functions belonging

to the class Nn
δ,λ,l,p,q(ϕ) as follows.

Theorem 2.3. Let ϕ(ζ) = 1 +B1ζ +B2ζ
2 + · · · ∈ P . If f(ζ) is given by (1.1) belongs to the

class Nk
δ,λ,l,p,q(ϕ) then

|a3 − µa22| ≤
B1

[(1− α) + L(δ, λ, n)([3]p,q)[3]p,qα]

max

{
1−

∣∣∣∣B2

B1
− µB1[(1− α) + L(δ, λ, n)([3]p,q)[3]p,qα]

[(1− α) + L(δ, λ, n)([2]p,q)[2]p,qα]2

∣∣∣∣} (2.7)

where µ is a complex number and 0 < q < p ≤ 1. The result is sharp.

Proof. If f(ζ) ∈ Nk
δ,λ,l,p,q(φ), by Definition (1.1) there is a Schwarz function ω(ζ) in U such

that

(1− α)
f(ζ)

z
+ αDk

δ,λ,l,p,q(f(ζ)) = ϕ(ω(ζ)). (2.8)

Now we define the function

p(ζ) =
1 + ω(ζ)

1− ω(ζ)
= 1 + p1ζ + p2ζ

2 + · · ·. (2.9)

Since ω(ζ) is a Schwarz function, we have R{p(ζ)} > 0 and p(0) = 1. Let

g(ζ) = (1− α)
f(ζ)

ζ
+ αDk

δ,λ,l,p,q(f(ζ)) = 1 + d1ζ + d2ζ
2 + · · ·. (2.10)

By using equations (2.8), (2.9) and (2.10) we obtain

g(ζ) = ϕ

(
p(ζ)− 1

p(ζ) + 1

)
since

p(ζ)− 1

p(ζ) + 1
=

1

2

(
p1ζ +

(
p2 −

p21
2

)
ζ2 +

(
p3 +

p31
4
− p1p2

)
ζ3 + · · ·

)
which gives

ϕ

(
p(ζ)− 1

p(ζ) + 1

)
= 1 +

1

2
B1p1ζ +

(
1

2
B1

(
p2 −

p21
2

)
+

1

4
B2p

2
1

)
ζ2 + · · ·. (2.11)

Using equations (2.10) and (2.11) we obtain

d1 =
1

2
B1p1

d2 =
1

2
B1

(
p2 −

p21
2

)
+

1

4
B2p

2
1.
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A computation gives

(1− α)
f(ζ)

ζ
+ αDn

δ,λ,l,p,q(f(ζ)) = 1 + [(1− α) + L(δ, λ, l, n)([2]p,q)[2]p,qα]a2ζ + [(1− α)

+L(δ, λ, l, n)([3]p,q)[3]p,qα]a3ζ
2 + · · ·

Inequality (2.10), yields

d1 = [(1− α) + L(δ, λ, l, n)([2]p,q)[2]p,qα]a2

d2 = [(1− α) + L(δ, λ, l, n)([3]p,q)[3]p,qα]a3

now comparing the coefficients of ζ ad ζ2 and simplifying we get

a2 =
B1p1

2[(1− α) + L(δ, λ, l, n)([2]p,q)[2]p,qα]

and

a3 =
B1

2[(1− α) + L(δ, λ, l, n)([3]p,q)[3]p,qα]

(
p2 −

p21
2

)
+

B2
2p

2
1

4[(1− α) + L(δ, λ, l, n)([3]p,q)[3]p,qα]

hence

a3 − µa22 =
B1

2[(1− α) + L(δ, λ, l, n)([3]p,q)[3]p,qα]
(p2 − γp21)

where

γ =
1

2

(
1− B2

B1
− µB1[(1− α) + L(δ, λ, l, n)([3]p,q)[3]p,qα]

[(1− α) + L(δ, λ, l, n)([2]p,q)[2]p,qα]2

)
�

Hence by Lemma 1.5, the result follows.

Note that, suitable choices of parameters in Theorem (2.3) yields the following Corollary

derived in [2].

Corollary 2.4. Let ϕ(ζ) = 1 + B1ζ + B2ζ
2 + · · · ∈ P , with B1 6= 0. If f(ζ) given by (1)

belongs to the class N(q)(ϕ) and µ is a complex number, then

|a3 − µa22| ≤
B1

[(1− α) + [3]p,qα]
max

(
1−

∣∣∣∣B2

B1
− [(1− α) + [3]p,qα]µB1

[(1− α) + [2]2p,q]

∣∣∣∣) (2.12)

The result is sharp.
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