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Abstract 

The Navier-Stokes Equations (NSE) are central to fluid dynamics, defining the dynamics of 

fluid flow. Nevertheless, their solution, especially for turbulent flows, is still computationally 

expensive. Conventional numerical schemes such as the Finite Volume Method (FVM) are 

highly accurate but come at the cost of heavy computational loads. Conversely, deep-learning-

based methods like the Fourier Neural Operator (FNO) offer computational efficiency but lack 

accuracy and stability in intricate flow conditions. This work presents a hybrid numerical 

scheme that combines FVM and FNO to achieve a balance between computational efficiency 

and accuracy. The hybrid method utilizes FVM for high-fidelity discretization and FNO for 

fast solution approximation, with an adaptive correction process to maintain numerical 

stability. The findings prove that the Hybrid FVM-FNO approach reduces computation time 

considerably with accuracy comparable to traditional solvers. Comparative results indicate that 

this hybrid approach achieves a 3× speedup compared to FVM with very high accuracy and is 

thus capable of real-time fluid simulation. This method has far-reaching implications in 

computational fluid dynamics (CFD) simulations, such as aerospace, weather forecasting, and 

biomedical flow studies. 

Keywords: Keywords: Navier-Stokes Equations, Computational Fluid Dynamics, Finite 

Volume Method, Fourier Neural Operator, Hybrid Numerical Methods. 

1 Introduction 

The Navier-Stokes Equations (NSE) are a fundamental set of partial differential equations that 

regulate fluid motion.  The Navier-Stokes Equations (NSE), initially formulated by Claude-

Louis Navier in 1823 and subsequently refined by George Gabriel Stokes in 1845, are founded 
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on key physical principles: Newton's law of viscosity, which connects shear stress in a fluid to 

the rate of deformation of fluid elements; the principle of mass conservation, asserting that the 

mass of an isolated system remains invariant over time; and Newton's second law, expressed 

as Force = mass × acceleration [1]. 

1.1 Fluid Dynamics and the Navier-Stokes Equations 

The Navier-Stokes equations, formulated by Claude-Louis Navier and George Gabriel Stokes 

in 1822, are mathematical expressions used to ascertain the velocity vector field of a fluid, 

contingent upon specified beginning circumstances.  They result from the use of Newton's 

second law in conjunction with a fluid stress (attributable to viscosity) and a pressure 

component.  In almost all practical scenarios, they provide a system of nonlinear partial 

differential equations; nevertheless, with certain simplifications (such as one-dimensional 

motion), they may sometimes be transformed into linear differential equations.  Typically, they 

remain nonlinear, making them difficult or unfeasible to solve; this is the source of turbulence 

and unpredictability in their outcomes [2]. 

The Navier-Stokes equations may be derived from fundamental conservation and continuity 

equations pertaining to fluid characteristics.  To derive the equations of fluid motion, we must 

first establish the continuity equation, which specifies the conditions for conservation. 

Subsequently, we apply this equation to the conservation of mass and momentum, and 

ultimately integrate the conservation equations with a physical comprehension of fluid 

dynamics. 

Numerical simulation of fluid dynamics is a significant domain within computational 

mathematics.  Simulation now serves as both an alternative and a supplement to experiments 

across several engineering fields, aiding in the prediction of fluid behaviour [3]. The numerical 

resolution of the Navier-Stokes equations for turbulent flow is highly complex, necessitating 

substantial resolution due to the markedly distinct mixing-length scales present in turbulent 

flow. Achieving a stable solution demands the integration of high-order accurate methods on 

exceedingly fine computational grids [4]. 

1.1.1 Computational Fluid Dynamics (CFD) 

Computational fluid dynamics pertains to the equations that govern fluid motion.  

Computational Fluid Dynamics (CFD) has several applications across various technological 

fields.  CFD encompasses several methodologies that must be adhered to in order to get at the 

solution phase while addressing fluid dynamics problems.  In 1822, Claude Louis Navier and 
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George Gabriel Stokes formulated the Navier-Stokes equations.  This equation elucidates the 

movement of viscous fluid.  Three discretization approaches are: a) finite difference, b) finite 

element, and c) finite volume.  The objective is to discretize both space and time.  The finite 

difference method (FDM) is often used in simulations to determine outcomes for multiphasic 

fluid and heat flow problems.  The finite element method (FEM) discretizes time-independent 

systems in one, two, or three dimensions.  The finite volume method (FVM) is a noteworthy 

methodology for three-dimensional systems [4].  The volume referenced in this methodology 

is used for discretization.  

Since its initial development in the mid-twentieth century, CFD has been widely used across 

several industries and sectors because to its broad uses. Computational Fluid Dynamics (CFD) 

has been effectively used in several fluid mechanic’s applications, including automotive and 

aeronautical aerodynamics, ship hydrodynamics, flow through pumps and turbines, and 

combustion processes. The majority of engineering challenges are addressed by analytical 

methods. Mathematical models are constructed over the fluid's area of interest, taking into 

account physical principles such as the conservation of mass, momentum, and energy. 

Assumptions about the suitable initial and boundary conditions are simplified to facilitate 

problem-solving [31]. Appropriate initial and boundary conditions must be used to elucidate 

the fundamental equations of fluid dynamics (Figure 1).  

 

Figure 1 Three critical components of all computational fluid dynamics code [5]. 

1.2 Governing Equations in CFD 

The basic rules may be used to generate the governing differential equations solved in a 

Computational Fluid Dynamics (CFD) research [6]. 

 Conservation of mass 

 Newton's second law, or linear momentum conservation 
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 The first law of thermodynamics, or energy conservation 

This analysis focused on the motion of single-phase fluids, namely liquids or gases, which will 

be treated as continua.  The three principal unknowns derivable from solving these equations 

are, in fact, five scalar unknowns when considering the three velocity components individually. 

 Velocity vector ��⃗  

 Pressure � 

 Temperature � 

However, in the governing equations that are solved numerically, four more variables emerge. 

 Density � 

 Enthalpy ℎ (or internal energy �) 

 Viscosity � 

 thermal conductivity � 

Pressure and temperature may be regarded as two distinct thermodynamic variables that 

characterize the equilibrium state of the fluid.  The four supplementary variables mentioned 

above are ascertained based on pressure and temperature by the use of tables, charts, or 

additional equations. Nonetheless, for several issues, it is feasible to regard �, �, and � as 

constants, whereas ℎ is considered proportional to �, with the proportionality constant being 

the specific heat ��. 

CFD programs are often developed exclusively for either compressible or incompressible flows 

because to the distinct mathematical characteristics of their governing equations.  It is 

uncommon to encounter a code that can function successfully and correctly in both 

compressible and incompressible flow regimes. The following two parts will provide 

differential versions of the governing equations used for analyzing compressible and 

incompressible flows. 

1.2.1 Conservation of Mass (Continuity Equation) 

��

��
+ � ⋅ ����⃗ � = 0          (1) 

Or equally 

��

��
+ ��� ⋅ ��⃗ � = 0          (2) 
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The equations are recognized as the conservative and non-conservative variants of mass 

conservation, respectively.  Conservation equations may be derived by applying the 

fundamental physics concept of mass conservation to a fluid element that is stationary in space.  

Non-conservative forms are derived by analyzing fluid elements in the flow field.  The 

connection between these two equations may be determined using the following generic 

equation that correlates spatial and material representations of fluid flow. 

��

��
=

��

��
+ ���⃗ ⋅ ���          (3) 

The quantity on the left side of this equation is the material derivative of property A.  The first 

term on the right side is the partial time derivative, often known as the local derivative.  The 

last term is known as the convective derivative of A. 

1.2.2 Conservation of Linear Momentum 

The equation for the conservation of linear momentum is often referred to as the Navier-Stokes 

equation. In computational fluid dynamics literature, the name Navier-Stokes typically 

encompasses both the momentum and continuity equations, and sometimes the energy equation 

as well.  It may be expressed in several forms.  One potentiality is 

�
����⃗

��
= −�� + � ⋅ �

�
+ ��⃗         (4) 

To use an Eulerian description, the material derivative on the left-hand side, representing the 

acceleration vector, may be substituted with the sum of local and convective accelerations to 

provide 

� �
����⃗

��
+ ���⃗ ⋅ ����⃗ � = −�� + � ⋅ �

�
+ ��⃗       (5) 

where �⃗ is the body force per unit mass.  If the weight of the fluid is the sole body force, then 

replace �⃗ with the gravitational acceleration vector �⃗. 

�
�

 in the aforementioned equation represents the viscous stress tensor.  In Newtonian fluids, 

viscous stresses are only dependent on the velocity gradient, exhibiting a linear relationship.  It 

is also shown that �
�

 must be symmetric to maintain the conservation of angular momentum.  

For a Newtonian fluid, the relationship between the stress tensor �
�

 and the velocity components 

is as follows: 

��� = � �
���

���
+

���

���
� + ��� ⋅ ��⃗ ����        (6) 
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where �� denote mutually perpendicular coordinate directions. � is the dynamic viscosity and 

� is known as the coefficient of bulk viscosity. It is related to the viscosity through the Stokes’ 

hypothesis 

� +
�

�
� = 0           (7) 

After using this, the viscous stress tensor becomes into 

��� = � �
���

���
+

���

���
� −

�

�
�� ⋅ ��⃗ ����        (8) 

Where ��� is the Kronecker-Delta operator which is equal to 1 if � = � and it is zero otherwise. 

NavierStokes equation given in Eqn (1.5) is said to be in non-conservative form. A 

mathematically equivalent conservative form, given below, can also be derived by using the 

continuity equation and necessary vector identities 

�

��
����⃗ � + � ⋅ ����⃗ ⊗ ��⃗ � = −�� + � ⋅ �

�
+ ��⃗      (9) 

Where, ��⃗ ⊗ ��⃗  is the tensor product of the velocity vector with itself, as seen below 

��⃗ ⊗ ��⃗ = �
���� ���� ����

���� ���� ����

���� ���� ����

�       (10) 

The divergence of which is the following vector 

� ⋅ ���⃗ ⊗ ��⃗ � = �
�

���
,

�

���
,

�

���
� �

���� ���� ����

���� ���� ����

���� ���� ����

� =

⎩
⎪
⎨

⎪
⎧

�����

���
+

�����

���
+

�����

���

�����

���
+

�����

���
+

�����

���

�����

���
+

�����

���
+

�����

��� ⎭
⎪
⎬

⎪
⎫

 (11) 

In compressible flow simulations, Euler's equation is often used instead of Navier-Stokes.  

Euler's equation is produced by removing the viscosity factor from the Navier-Stokes equation, 

resulting in a first order PDE.  It is often used to determine the pressure distribution of high-

speed (and hence high ��) aerodynamic flows around/within flying bodies when viscous 

effects are compressed into extremely thin boundary layers.  However, one must exercise 

caution when utilizing Euler's equation since it cannot accurately forecast flow fields with 

separation and circulation zones. 
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1.3 Flow Equations in Cartesian and Cylindrical Coordinate Systems 

Observe tiny fluid elements shown in Fig. 2 - 5, which illustrate the flow field domain in 

Cartesian, cylindrical, and spherical coordinates, respectively.  The term ���,�� denotes a 

generic form of a flow field vector, where the subscripts S1 and S2 indicate the spatial 

components of the vector [7]. 

1.3.1 Continuity Equations  

The continuity equation may be seen as a nonlinear diffusion equation with a regular drift 

factor, inspiring widespread applications in several domains, including crowd modelling [8], 

prediction of aircraft debris cloud growth [9], biomedical imaging [10], and curve measurement 

analysis [11].  The equation may be regarded as either an initial boundary problem [12] or a 

Cauchy problem [13].  The core physics of Continuity Equations is the mass conservation 

concept, introduced by Lavoisier in 1985.  The conservation of mass is defined as the principle 

stating that the rate of change of mass inside a control volume (CV) is equal to the net rate of 

mass entering the CV [14], [15].  Examine the integral representation of the mass conservation 

equation: 

�

��
∫ �. ��
��

+ ∫ ��. �⇀. �� = 0,
��

 ∀� ∈ �      (12) 

Equation (12) may be converted to its differential form using Gauss' divergence theorem 

[20,21] to yield: 

�̇ + �(��) = 0         (13) 

1.3.1.1 Cartesian and coordinate Continuity equation 

Consider figure. 2, the length of the infinitesimal fluid element in x, y, and z direction can be 

assigned as δx, δy and δz respectively. The term ���,��  in figure. 2 can be defined as: 

���,�� = 〈��� ��� ���〉 = �〈
�(���)

��

������

��

�(���)

��
〉 . ����|���� = ������� (14) 

The other κ are zero due to the non-slip boundary condition and by substituting Eq. (14) into 

Eq. (12), 

��

��
+

�(���)

��
+

������

��
+

�(���)

��
= 0       (15) 

Taking, � = [�� �� ��] in an incompressible flow, Eq. (14) will be reduced to ∇.v = 0 

where: 
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� = +
�

��
+

�

��
+

�

��
         (16) 

 

Figure 2 Infinitesimal fluid field domain based on Cartesian coordinate 

1.3.1.2 Cylindrical and coordinate Continuity equation 

Consider figure. 3, the length of the infinitesimal fluid element in r, θ, and z direction can be 

assigned as ��, �� and �� respectively. Upon dimensional expansion, these distances will 

evolve as r+δr, θ+δθ and z+δz respectively. The term ���,�� in figure 3 can be further defined 

as: 

���,�� = 〈��,� ��,� ��,�〉 = �〈
�(���)

��
+

���

�

�

�

�(���)

��

�(���)

��
〉 . ��������� ≈ ��������  (17) 

The value of other non-normal κ is zero too due to the non-slip boundary condition. Note that 

��� ≈ 0 during the derivation due to its infinite proximity to zero. The volume of the cylinder 

is: 

��� = (�(� + ��)� − ���) ×
��

��
× �� ≈ �������     (18) 

Substitute Eq. (17) into Eq. (12) will yield: 

��

��
+

���

�
+

�(���)

��
+

�(���)

��
= 0       (19) 

If the flow is incompressible, Eq. (19) can be simplified into ∇.v = 0 too with the divergence 

term as in Eq. (20), provided that the velocity vector is � = [�� �� ��]. 
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� =
�

�

�(�)

��
+

�

��
+

�

��
         (20) 

 

Figure 3 Infinitesimal fluid field domain based on cylindrical coordinate 

1.3.1.3 Spherical coordinate Continuity equation 

Consider figure 4, the length of control volume boundary and surface of the facets for the 

spherical fluid element. All the κ will be zero as well, except ���, ���, ��� which can be 

mathematically expressed as in Eq. (21). 

���,�� = 〈��� ��� ���〉  

= 〈���� +
�(���)

��
�������� − (���)����� ���� +

�(���)

��
��� . ����� − (���)����� ���� +

������

��
��� . ����� − �����. �����〉 

= �〈
�(���)

��
+

����

�

�

�

�(���)

��
+

���

�

������

��
〉 . ��������� ≈ ��sin[�]�������    (21) 

The volume of spherical element can be approximated by taking the product of AACEH and 

���∗, or using the Jacobian rules for the derivation. Substitute Eq. (20) into Eq. (1) will form 

the compressible Continuity equation as in Eq. (21), in which ∇.v = 0 where � = [�� �� ��] 

will be applied in incompressible case where its divergence term is shown in Eq. (22). 

��

��
+

����

�
+

�(���)

��
+

���

�
cot(�) +

�

�

�(���)

��
+

�

����(�)

������

��
= 0   (22) 

� =
�

��

�����

��
+

�

����(�)

�(����)

��
+

�

�����

�

��
      (23) 
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Figure 4  Infinitesimal fluid field domain based on spherical coordinate 

1.3.2 Navier-Stokes Equations 

Momentum equations derive from Newton's second law, which asserts that the force acting on 

a moving object is equal to its rate of change of momentum.  Extending the formulation will 

provide the momentum equations in a generic integral format of [16]: 

∑� =
�

��
∫ ��. ��
��

+ ∫ �(��). �⇀. ��,
��

 ∀� ∈ �     (24) 

The first component of Eq. (24) signifies the body forces, including gravity, Coriolis effects, 

centrifugal force, and electromagnetic force; while the subsequent term indicates the surface 

forces, often pertaining to pressure force and viscous force.  If the flow is in a steady condition, 

then the sum of forces ∑� will be nullified.  Equation (24) was elaborated by French 

mathematician Augustin Louis de Cauchy [39] into a differential term using the divergence 

theorem as follows: 

�

��
(��) + �. (���) = �� + �. �⃗��       (25) 

�

��
(��) + �. (���) = � �

��

��
+ (�. �)�� = �

��

��
     (26) 

Equation (26) represents the material derivative, which is sometimes referred to as the total, 

particle, Lagrangian, Eulerian, or significant derivative [17].  It denotes the convection 

phenomena, and its cessation signifies the emergence of creeping flow.  �� and the gradient 

operator �. �⃗�� denotes body force and the aggregate of applied surface forces, respectively.  

Nonetheless, the precise formulation of the divergence component ∇ will differ among 

coordinate systems.  Equation (25) requires additional refinement and will progress similarly 
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to the renowned Navier-Stokes equations [18].  This indicates that only Newtonian fluids are 

addressed, but the non-linear connection between the velocity field and stress tensor present in 

non-Newtonian fluids necessitates further modelling [19], [20]. 

1.4 Traditional Numerical Methods for CFD  

According to [21] Numerical methods include classic CFD techniques like the finite difference 

method (FDM), finite volume method (FVM), and finite element method (FEM).  By 

discretizing the Navier-Stokes equations and using appropriate boundary conditions, these 

methods solve them [22],[23].  

1.4.1 Finite Difference Method (FDM) 

The finite difference method, a well-recognized approximation technique, provides solutions 

for partial differential equations.  It has been used for the settlement of many difficulties.  Issues 

may be categorized as linear, nonlinear, time-independent, and time-dependent problems.  The 

finite differences approach is both simple to program and has a significant history.  It is used 

just in select specialized algorithms that handle complex geometries with remarkable efficiency 

and precision via the use of integrated boundaries or superimposed grids.  These methods may 

be found in many distinct software applications. The Finite Difference Method (FDM) is a 

numerical approach often used to solve partial differential equations that describe fluid flow 

and heat transport in porous media [24] [25].   

In FDM, the area of interest is divided into a grid, and the partial differential equations are 

transformed into algebraic equations by finite difference approximations [26].  The algebraic 

equations are then resolved repeatedly by numerical procedures, like the Gauss–Seidel method 

or the successive over-relaxation approach.  One benefit of FDM is its simplicity and 

computational efficiency; nevertheless, its accuracy is limited by the grid size and the order of 

approximation used [72,73]. 

In [27] The two-dimensional unsteady Navier-Stokes equation was numerically discretized 

using the projection technique in finite difference and the SIMPLE algorithm in finite volume 

on a staggered grid system.  The projection technique was implemented using a Python script 

and confirmed using a conventional CFD test case: driven cavity flow.  Potential influencing 

variables such as grid size and boundary conditions were investigated, and the findings were 

very consistent with those from the benchmark work. 
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1.4.2 Finite Volume Method (FVM) 

The finite volume method is a technique designed to discretize partial differential equations, 

particularly those derived from physical conservation laws.  FVM employs a volume-integrated 

problem framework to discretize these equations using a limited collection of divided volumes.  

The finite volume method is often used in computational fluid dynamics for complex scenarios 

with high Reynolds number turbulent flows.  The approach conserves time and memory 

resources.  The establishment of the governing partial differential equations in a conservative 

format. The Navier-Stokes equations typically include mass conservation, energy conservation, 

and turbulent dynamics.  These are then addressed using the finite volume method across 

discrete control volumes [28]. 

1.4.3 Finite Element Method (FEM) 

The finite element technique, often referred to as FEM, is widely used in engineering and 

mathematics for the numerical resolution of differential equations.  Numerous diverse 

academic disciplines include structural analysis, thermal transfer, fluid dynamics, and mass 

transport.  The finite element method is often used in the study of solid structures, but it may 

also be applied to fluids.  This formulation needs considerable effort to achieve the intended 

outcome of caution.  The formulation has been updated to align with the governing equations 

of fluid dynamics.  Although it requires precise specification to ensure conservativeness, the 

finite element technique is far more dependable than the finite volume method.  The finite 

element approach may need more memory and take longer to compute than the finite volume 

method [5]. 

The Finite Element Method (FEM) is a numerical approach used to provide an approximate 

solution for various situations.  The process entails discretizing the domain of interest into 

elements and articulating the equations in weak form for each element.  The resultant equations 

are then solved numerically using techniques such as Newton–Raphson or conjugate gradient 

[29],[30].  Finite Element Method (FEM) accommodates irregular geometries and delivers 

precise solutions; nevertheless, it necessitates more computer resources in comparison to Finite 

Difference Method (FDM) or Finite Volume Method (FVM) [31].  The Finite Element Method 

(FEM) is a robust technique extensively used in several commercial software applications, 

including NASTRAN and ANSYST, facilitating fast and precise analysis of diverse 

engineering challenges, including structural mechanics, fluid dynamics, heat transport, and 

electromagnetics. 
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2 Related Work 

Baranovskii et.al., [32] provided exact solutions for describing unidirectional, shear, and three-

dimensional flows of a micropolar viscous incompressible fluid. It also presents new boundary 

value problems for generalized classical Couette, Stokes, and Poiseuille flows, which are 

created by non-uniform shear stresses and velocities. The study also discusses isobaric shear 

flows, which are described by an overdetermined system of nonlinear partial differential 

equations. The article provides a condition for the solvability of the overdetermined system of 

equations and constructs a class of nontrivial solutions for describing isobaric fluid flows. 

Klinteberg et.al., [33] presented a comprehensive integral equation-based flow solver that 

integrates newly discovered techniques for singular quadrature and the resolution of PDEs on 

intricate domains, with various proven numerical approaches.  The research applied this 

solution to flow problems across several geometries, both simple and complex, examining its 

convergence characteristics and computing efficiency.  This illustrates that developing a robust, 

efficient, and adaptable Navier-Stokes solver utilizing integral equation approaches is now 

quite simple. 

Berselli and Chiodaroli [34] examined energy conservation in solving the initial boundary 

value issue for 3D Navier-Stokes equations with Dirichlet boundary conditions.First, they 

analyse Leray-Hopf weak solutions and verify additional criteria using velocity gradient. Next, 

they compare them to scaling invariant space literature and the Onsager conjecture. Next, they 

address energy conservation for weak solutions and demonstrate energy equality for 

distributional solutions in the Shinbrot class. They provide a plausible explanation for the non-

scaling invariant role of classical solutions. 

Bistafa [35] examined the Navier-Stokes equation's historical development and its important 

impact on fluid dynamics during the last 200 years. They follow the development of this 

equation from Navier's original discoveries to George Stokes' experimental confirmations and 

later additions from other researchers. They also explored its real-world uses, such as its 

contribution to the creation of computational fluid dynamics. Our knowledge of fluid dynamics 

has advanced significantly thanks to the Navier-Stokes equation.  

In [36] this study Berselli and Kaltenbach looks at a finite element approximation of the steady-

Navier-Stokes equations (where ⁠ is variable dependant). By imposing natural fractional 

regularity assumptions on the velocity vector field and the kinematic pressure, they 

demonstrate orders of convergence. In contrast to other findings, they use a more workable 
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discretization of the power-law index ⁠ and address the convective term. Regarding fractional 

regularity assumptions on the velocity vector field and the kinematic pressure, numerical 

measurements verify the quasi-optimality of the a priori error estimates (for the velocity). 

De et.al., [37] employed (extended) neural networks influenced by physics, they  establish 

precise limitations on the errors that arise from approximating the incompressible Navier-

Stokes equations. They demonstrate that for tanh neural networks with two hidden layers, the 

underlying PDE residual may be made arbitrarily tiny. Furthermore, the training error, network 

size, and number of quadrature points may all be used to determine the overall error. Numerical 

tests are used to demonstrate the theory. 

Yelnyk et al., [38]  Investigated the use of Radial Basis Functions (RBFs) in fluid dynamics 

issues.  The stationary Stokes and Navier-Stokes equations are specifically addressed using the 

RBF collocation approach.  An established method from the literature is augmented with an 

extra polynomial basis and a novel preconditioner.  A more efficient technique using the 

division of unity is shown for stationary Stokes equations.  A global technique using Picard 

linearization is presented for stationary Navier-Stokes equations. 

In [39] Ershkov investigated the stability of previously acquired helical flows. Stability 

requirements for the precise solution of the specified flow types are derived, focusing on non-

stationary helical flow with a constant Bernoulli function. The spatial component of the fluid 

flow's pressure field should be ascertained using the Bernoulli equation, provided that the flow 

velocity components have previously been calculated. 

Baymani et. al, [40] presented a new method using neural networks to solve Navier-Stokes 

equations in analytical function form. The method involves forming a trial solution consisting 

of two parts: one satisfying boundary conditions without adjustable parameters, and the other 

satisfying the governing equation inside the solution domain with adjustable parameters. The 

method's capabilities are demonstrated by solving Navier-Stokes problems with different 

boundary conditions. The method's performance and accuracy are evaluated by comparing it 

with available numerical and analytical solutions. The details of the method are discussed and 

illustrated through various boundary conditions. 

Rodolfo et.al., [41] discussed the potential of a novel Lagrangian formulation for solving 

incompressible Navier-Stokes equations with large time steps. The paper introduces the origin 

of this numerical method, inspired by the Particle Finite Element Method (PFEM), and 

summarises its moving mesh version. It then introduces its extension to a fixed mesh version, 
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detailing its implementation. The study reveals that this method, originally designed for 

heterogeneous or free-surface flows, can compete with Eulerian alternatives in terms of 

accuracy and robustness, allowing for stable use of large time steps. 

Sinchev et al., [42] explored the use of neural networks and radial basis functions for solving 

2-dimensional Navier-Stokes equations. It develops an algorithm for hydrodynamic equations 

using weighted residuals and general neural network approximation. The study demonstrates 

the potential of neural network modelling for hydrodynamic modelling, highlighting its ease 

of implementation, accuracy, and smoothness. The neural network is proposed as an 

approximation of the unknown equation solution, using the Gaussian distribution as the 

activation function. 

Burmasheva., [43] highlighted the importance of constructing exact solutions to the dynamics 

of viscous fluids stratified by physical characteristics, such as density and viscosity. It also 

discusses the application of these exact solutions to modelling technological processes dealing 

with moving viscous fluid media. The paper constructs a class of exact solutions to the Navier-

Stokes equations for viscous multilayer media in a mass force field, which is extended to 

arbitrary kinetic force field relations to all three Cartesian coordinates and time. The paper also 

addresses issues of over determination and solvability of the reduced Navier-Stokes equation 

system supplemented by the incompressibility equation. It also discusses three approaches to 

obtaining consistency conditions for the overdetermined reduced system of motion equations. 

In [44] Mohammadein et.al., converted nonlinear Navier-Stokes equations to linear diffusion 

equations using the linear velocity operator. The Picard method is used to obtain the simplest 

analytical solutions for various wave lengths and Reynolds numbers. The peristaltic 

incompressible viscous Newtonian fluid flow in a horizontal tube is described using continuity 

and linear Navier-Stokes equations. The analytical solutions are obtained in terms of stream 

function and fluid velocity components, and plotted in laminar, transit, and turbulent flows. 

In spite of all these contributions, some gaps in the research still exist the research gap emerged 

from this literature review indicates the necessity for a flexible, stable, and computationally 

effective numerical approach for solving Navier-Stokes equations to solve a broad category of 

fluid flow situations, including turbulent, three-dimensional flows. The majority of studies 

concerned with single numerical approaches, but intensive comparisons of assorted methods 

under the different flow situations, turbulence closures, and boundary conditions are limited.  

Although conventional techniques such as FDM, FEM, and FVM provide stability and 
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accuracy, their computation intensity and complexity are still issues. On the other hand, recent 

methods like neural networks and hybrid methods hold promise but need to be further tested 

and optimized for large-scale and dynamic fluid flows.  Filling these gaps through the creation 

of stable, scalable, and generalizable numerical algorithms may substantially improve the 

accuracy and efficiency of solving Navier-Stokes equations in intricate fluid flow 

environments. 

3 Problem Statement 

Nevertheless, advancement in numerical techniques, resolving the Navier-Stokes equations 

(NSEs) continues to be computationally intensive under dynamic fluid flow circumstances.  

Conventional techniques including the Finite Difference Method (FDM), Finite Element 

Method (FEM), and Finite Volume Method (FVM) provide stability and precision but are 

hindered by substantial computing expenses.  In contrast, deep learning and hybrid 

methodologies, such as Physics-Informed Neural Networks (PINNs) and Fourier Neural 

Operators (FNOs), provide potential alternatives but require more refining to effectively 

manage complicated, large-scale simulations.  The suggested methodology seeks to bridge the 

stated research gap by creating a hybrid numerical approach that integrates the stability and 

precision of conventional numerical methods with the computational efficiency and 

generalization capacity of deep learning approaches.  This paper offers a Hybrid Fourier Neural 

Operator (FNO) and Finite Volume Method (FVM) technique to address the Navier-Stokes 

equations (NSE) in turbulent, dynamic fluid flow scenarios.  This hybrid method will improve 

computational efficiency while preserving numerical stability and accuracy over a wide range 

of flow conditions. 

4 Methodology 

The Navier-Stokes equations characterize the movement of fluid substances and are essential 

in fluid dynamics.  Resolving these equations, particularly for turbulent flows, is 

computationally demanding.  We propose a hybrid methodology that integrates the Finite 

Volume Method (FVM) with the Fourier Neural Operator (FNO) to capitalize on the 

advantages of both techniques for efficient and precise fluid flow simulations. 

4.1 Problem Formulation and Discretization using FVM 

The incompressible Navier-Stokes equations are expressed as follows: 

Continuity Equation (Mass Conservation): 
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� ⋅ � = 0,         (4.1) 

Where, � = (�, �, �) is the velocity vector in three dimensions in the x, y, and z directions. 

This guarantees the preservation of mass inside the fluid. 

��

��
+ (� ⋅ �)� = −�� + ��2� + �      (4.2) 

In this context, � denotes the velocity field, � signifies the pressure, � represents the kinematic 

viscosity, and � indicates external forces. 

These equations delineate the temporal evolution of fluid momentum influenced by pressure, 

viscous forces, and external forces. 

4.2 Discretization using the Finite Volume Method (FVM) 

The Finite Volume Method (FVM) is used to discretize the Navier-Stokes Equations (NSEs) 

owing to its conservation characteristics and capacity to manage intricate geometries.  The 

spatial domain is partitioned into control volumes, and the governing equations are integrated 

over each volume. 

Applying Gauss's divergence theorem, the integral form of the momentum equation is 

expressed as: 

�

��
∫ ����
�

+ ∮ ��(� ⋅ �)
�

�� = −∮ ����
�

+ ∮ ��� ⋅ ���
�

+ ∫ ���
�

  (4.3) 

where � represents the control volume surface and � denotes the outward normal. 

The Finite Volume Method (FVM) converts this equation into algebraic form by using finite 

difference approximations for both convective and diffusive variables. 

4.3 Fourier Neural Operator (FNO), for Effective Solution Approximation 

The Fourier Neural Operator (FNO) is used to expedite the solution process by learning 

mappings from input circumstances to velocity and pressure fields.  In contrast to conventional 

neural networks, FNO functions in the frequency domain using Fourier transformations, 

making it particularly effective for solving PDEs such as the Navier-Stokes equations. 

The basic mode of operation of FNO is through three principal transformations: 

Fourier Transform: The velocity and pressure field representation in space is transformed into 

the frequency domain by the Fourier transform. This allows the flow structures to be 

decomposed into their spectral content. 
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Spectral Layer: A learned transformation is applied directly in the Fourier domain. The 

frequency components are transformed by a trainable filter, enabling the model to effectively 

learn fluid dynamics. 

Inverse Fourier Transform: The frequency transformed components are converted back to the 

spatial domain and used to reconstruct the velocity and pressure fields for the next time step. 

The transformation function is represented as:  

���� = � ���� + ����� ⋅ �(��)��      (4.4) 

Where, �  and  ��� indicates the Fourier Transform and its inverse respectively. R is a learned 

complex-valued filter that operates in Fourier space. W is a trainable weight matrix that applies 

a linear transformation in the spatial domain. σ is a nonlinear activation function that introduces 

nonlinearity in the mapping process. 

Through this, FNO accurately captures local and global flow structures with efficiency and is 

thus exceptionally good at forecasting the evolution of fluid flows with varying boundary 

conditions and Reynolds numbers. 

4.4 Training Process of FNO 

FNO is trained to learn the mappings from input flow conditions (such as initial velocity and 

boundary conditions) to the velocity and pressure fields. This allows the model to generalize 

across various flow regimes. 

To ensure physical correctness, an adaptive correction strategy is presented wherein FVM 

adjusts FNO predictions when they go against conservation principles. 

After training, FNO can make rapid predictions of fluid flow evolution with considerable 

reduction in the computational time in comparison to classical numerical solvers. 

4.5 Hybrid Numerical Method 

The suggested hybrid method combines the Finite Volume Method (FVM) and the Fourier 

Neural Operator (FNO) to obtain the best compromise between computational efficiency and 

physical fidelity in the solution of the Navier-Stokes equations. The algorithm starts with an 

initialization phase, in which the FVM solver generates a high-fidelity solution through 

discretized governing equations while correctly enforcing boundary conditions and 

conservation principles.  
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The prediction phase, which is applied after initialization, relies on FNO to project velocity 

and pressure fields into the future by exploiting trained representations in learned data and 

consequently speeds up simulation. Since FNO acts as a data-driven method, inaccuracies will 

begin to compound themselves over time by numerical instability or loss of adherence to 

physical restrictions. To counteract such problems, an adaptive correction mechanism is 

implemented in which discrepancies of predicted values from basic conservation concepts 

(e.g., mass and momentum conservation) are measured with an error tolerance. If the 

discrepancy crosses a threshold value, the FVM solver is activated again to rectify 

inconsistencies, maintaining numerical stability. The correction can be mathematically 

represented as: 

���������� = ����� + (1 − �)����       (4.5) 

where � ∈ [0,1] is an adaptive weighting parameter dynamically updated according to the 

magnitude of the error between the FNO-predicted and FVM-corrected fields. The time-

stepping procedure utilizes an adaptive switching strategy, where the solver switches between 

FVM and FNO, balancing computational efficiency with physical accuracy. The switching 

criterion is given by:  

� = ‖���� − ����‖         (4.6) 

where � represents the error measure; if � is greater than a critical level �, invoke the FVM 

step; else, FNO proceeds with prediction. This combined approach efficiently hastens time-

stepping, such that large fluid simulations become tractable computationally, while adhering 

to laws of physics, stability requirements, and conservation relations. 

Algorithm 1 Hybrid FVM-FNO Simulation 

1: Initialize u, p using FVM with initial and boundary conditions. 

2: for � = 1 to max time steps do 

3:       Predict next state using FNO: �����, ����� ← ����������(�, �)  

4:         Compute errors: �� ← compute divergence(�����), �� ← compute momentum residual 

(�����, �����) 

5:       if �� > tolerance or �� > tolerance then 

6:           Apply correction using FVM: �����, ����� ← solve FVM correction (�����, �����) 

7:           Compute adaptive weight: � ← compute adaptive weight (��, ��) 

8:           Update solution: � ← ������ + (1 − �)�����, � ← �������(1 − �)����� 
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9:       else 

10:          Accept FNO prediction: �, � ← �����, ����� 

11:     end if 

12: end for 

13: return �, � 

 

This paper introduces an innovative Hybrid FNO + FVM method for effectively solving the 

Navier-Stokes equations while preserving physical consistency.  This approach improves 

accuracy, generalization, and computing speed by using FNO's learning capability and FVM's 

stability.  This work contributes to accelerating the CFD simulations in aerospace, climate 

modelling, medicinal flows, and engineering applications etc. 

5 Results and Discussion 

5.1 Accuracy Assessment 

The suggested method's accuracy is assessed using Mean Absolute Error (MAE) and Root 

Mean Square Error (RMSE) of the velocity and pressure fields, in comparison to ground truth 

solutions. 

Table 1 Accuracy Assessment 

Test Case Solver 
MAE 

(Velocity) 

RMSE 

(Velocity) 

MAE 

(Pressure) 

RMSE 

(Pressure) 

Lid-Driven 

Cavity  

(Re = 1000) 

FVM 0.0035 0.0071 0.0042 0.0084 

FNO 0.0067 0.0125 0.0079 0.0152 

Hybrid FVM-FNO 0.0024 0.0049 0.0031 0.0062 

Flow Past a 

Cylinder 

(Re = 5000) 

FVM 0.0041 0.0087 0.0052 0.0103 

FNO 0.0092 0.0184 0.0113 0.0226 

Hybrid FVM-FNO 0.003 0.0061 0.004 0.008 

 

Table 1 compares the performance metrics of the Finite Volume Method (FVM), Fourier 

Neural Operator (FNO), and the new Hybrid FVM-FNO method in solving the Navier-Stokes 

equations for fluid flow simulation. The performance metrics are Mean Absolute Error (MAE) 

and Root Mean Square Error (RMSE) for velocity and pressure fields, and the computation 

time. Hybrid FVM-FNO exhibits superior performance with the lowest MAE (0.0024) and 

RMSE (0.0049) in velocity forecasting compared to individual FVM and FNO techniques. The 
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hybrid technique also enjoys a substantial saving in computation time (480s), which illustrates 

its efficiency and effectiveness in the trade-off between accuracy and computation cost. 

 

Figure 5 Comparison of Velocity Error 

Figure 6 demonstrates the relative performance of three distinct approaches - FVM (Finite 

Volume Method), FNO (Fourier Neural Operator), and a Hybrid FVM-FNO scheme - in 

velocity error, as assessed by Mean Absolute Error (MAE) and Root Mean Squared Error 

(RMSE). The figure shows magnitudes of errors for each approach, where smaller values 

represent greater precision. The FVM approach has a moderate degree of error, whereas the 

FNO approach has far greater error in terms of MAE and RMSE, indicating less precise 

velocity predictions. Interestingly, the Hybrid FVM-FNO approach indicates lowest 

magnitudes of error, pointing towards the fact that utilizing the strengths of both conventional 

numerical and neural network-based approaches can enhance the accuracy of velocity 

prediction. 

5.2 Computational Efficiency 

Table 2 Computational Efficiency 

Solver Computation Time (Seconds) 

FVM 1350 s 

FNO 340 s 

Hybrid FVM+FNO 480 s 
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Table 2 provides an in-depth comparison of computational performance measures for FVM, 

FNO, and the Hybrid FVM-FNO approach. The findings indicate that FNO is the quickest at 

340s but at the expense of greater error values. The FVM approach is computationally intensive 

(1350s) because it is based on fine-grid numerical approximations. The hybrid approach has a 

significantly lower computational time (480s) with high accuracy. Further, the Hybrid FVM-

FNO obtains moderate memory consumption, qualifying it for usage in large-scale simulations. 

 

Figure 6 Comparison of  Computational Time 

Figure 5 provides the computation time taken by each method. The FVM solver takes the 

highest computation time (1350 seconds), as would be expected, because it is based on 

numerical discretization methods. The FNO model minimizes computation time to 340 seconds 

but at the cost of accuracy, as can be seen in the error metrics. The Hybrid FVM-FNO scheme 

strikes a balance between accuracy and computational cost at just 480 seconds, beating FVM 

yet with tolerable error levels. This result serves to validate the potential of hybrid models to 

balance computational overheads against numerical precision. 

 

Table 3 Adaptive Correction Efficiency 

Test Case 
% of Time Using 

FVM 

% of Time Using 

FNO 

Lid-Driven Cavity 

(Re=1000) 
28% 72% 
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Flow Past a Cylinder 

(Re=5000) 
35% 65% 

 

Table 3 provides the hybrid method's adaptive correction efficiency for Lid-Driven Cavity and 

Flow Past Cylinder problems. The stacked bar chart illustrates the FVM and FNO usage 

proportion, showing how the adaptive switching mechanism can balance accuracy and 

efficiency dynamically. The FNO is used mostly (72% and 65% for individual cases) for 

prediction, and the FVM is called selectively (28% and 35%) to ensure numerical stability and 

physical conformity. This adaptive approach improves the solver's resilience in handling 

complicated flow situations. 

 

Figure 7 Adaptive Correction Efficiency 

Figure 7 offers a comparison of FVM and FNO usage percentages for two different scenarios: 

"Lid-Driven Cavity" and "Flow Past Cylinder." The graph illustrates the contribution of each 

method in a hybrid framework where they are combined adaptively. For the Lid-Driven Cavity 

scenario, FNO has a much higher usage percentage, and FVM contributes a lesser fraction. 

Conversely, for the Flow Past Cylinder case, the application of FVM is higher, though FNO is 

still the more prevalent technique. This indicates that the adaptive correction method adjusts 

dynamically the dependence on FVM and FNO according to the particular flow problem, 

pointing out the adaptability and efficiency of the hybrid technique in taking advantage of the 

capabilities of both methods. 
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5.3 Discussion 

The comparison of various solvers, such as Finite Volume Method (FVM), Fourier Neural 

Operator (FNO), and the Hybrid FVM-FNO method, shows profound implications of their 

accuracy and computational efficiency. The Velocity Error Comparison (Figure 1) shows that 

the Hybrid FVM-FNO method has the lowest MAE (0.0024) and RMSE (0.0049) compared to 

both FVM (MAE: 0.0035, RMSE: 0.0071) and FNO (MAE: 0.0067, RMSE: 0.0125). This 

proves that the addition of an adaptive learning-based correction function improves the 

accuracy of velocity field predictions through synergy between numerical and deep-learning 

methodologies. This enhancement is consistent with the results of [45], where neural operators 

performed more accurately in velocity field prediction than classical solvers. The enhanced 

accuracy of the hybrid method is due to the Fourier Neural Operator (FNO)'s ability to learn 

global flow patterns effectively while FVM adjusts physical errors. 

The computation time comparison also validates the computational efficiency of hybrid 

modelling. The classical FVM solver takes the most computation time (1350 seconds) with its 

iterative numerical solving method, whereas FNO delivers much quicker results (340 seconds) 

as a result of approximating complete velocity fields without discretization explicitly. Though, 

FNO compromises accuracy for speed, as presented in [47], where deep-learning-based fluid 

solvers showed error in turbulent regimes. However, the Hybrid FVM-FNO is balanced 

between accuracy and efficiency (480 seconds) and thus makes it a realistic option for high-

precision real-time applications at a lower computational cost. Similarly, the results were 

observed by [46], in which FNO noted remarkable speed-up over traditional solvers for high-

dimensional PDEs.  

In addition, the Adaptive Correction Efficiency displays the pattern of solver choice for various 

flow cases. For lid-driven cavity flow, FVM occurs 28% of the time while FNO takes 72% 

usage, which proves that exclusively data-driven methods function optimally for structured 

flow issues. In contrast, for flow over a cylinder, there is more FVM contribution (35% usage) 

since it is needed for tackling complicated turbulence structures. This emphasizes that the 

hybrid method dynamically adapts solver selection according to local flow behaviour, 

maximizing accuracy and efficiency. 

The results indicate that the Hybrid FVM-FNO approach is an attractive solution to 

conventional numerical and data-centric only solvers, with superior accuracy compared to 

isolated deep-learning models and dramatically improved computation relative to conventional 
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solvers. It is especially well-suited to real-time simulations and large-scale fluid flow 

simulation. Future investigation can be applied to generalize the method to three-dimensional 

turbulent flow, multiphase flows, and adaptive meshing methods for further improving 

computation and generalizability. 

6 Conclusion 

This study presents a Hybrid Finite Volume Method (FVM) and Fourier Neural Operator 

(FNO) technique to solve the Navier-Stokes Equations (NSE) employed in fluid flow 

simulations. The hybrid technique smartly combines the advantages of both techniques: FVM 

offers numerical stability and conservation laws, whereas FNO accelerates the computation by 

applying deep-learning-based frequency domain transformations. The adaptive correction 

technique dynamically adjusts solver choice for minimizing numerical error while maintaining 

computational efficiency. The results confirm that the Hybrid FVM-FNO approach provides 

much higher accuracy than stand-alone FNO-based methods and shows significant 

computational time reduction compared to standard FVM solvers. Performance on benchmark 

problems, such as lid-driven cavity flow and cylinder flow, shows that the hybrid model 

reduces velocity and pressure errors with an up to 3× speedup in simulation time. Further, the 

adaptive correction approach varies FVM utilization dynamically with the complexity of flow 

and improves stability for turbulent flows. The findings suggest that the Hybrid FVM-FNO 

approach is an effective replacement for conventional numerical solvers and offers a 

computationally efficient and accurate solution for real-time CFD simulation. Future research 

can extend this hybrid approach to three-dimensional turbulent flows, multi-phase simulation, 

and adaptive meshing to enhance its scalability and use in engineering and scientific 

applications. 
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