

Web Based Intrusion Detection System for SQLIA

Ayesha Siddiqa1

1 Dept. of Computer Science & Engineering
JNNCE

---***---
Abstract - SQL Injection Attack (SQLIA) refers to an
injection attack wherein an attacker can execute malicious SQL
statements that control a web application’s database server. By
leveraging SQL Injection vulnerability, given the right
circumstances, an attacker can use it to bypass a web
application’s authentication and authorization mechanisms and
retrieve the contents of an entire database. SQL Injection can
also be used to add, modify and delete records in a database,
affecting data integrity. The main idea of our work is to allow
developers the freedom to write and execute code without
having to worry about these attacks. In this paper we propose a
Web Based Intrusion Detection System for SQLIA to extract a
SQL query connecting to database from a PHP file. The
structure of the query under observation will be converted to
XML file and compared against the legitimate queries stored in
the XML file using association rule mining thus minimizing
attacks. WEBIDS is expected to reduce the time and manual
effort as it only focuses on fragments that are vulnerable for
attacks.

Key Words: XML Rule Mining, PHP, SQL injection,

1.INTRODUCTION

SQL injection is the command consisting of some SQLs (SQL
statements) that are used to control information within a
database. Such website which referring certain database(s)
applies this mechanism: in such a website, web applications
will return the user the results dynamically reflected when the
applications request to the database according to a user’s
inputs. What if the web application has vulnerability relevant
to SQL injection, an adversary may inject malicious SQL
statements so that the information within that database may
be manipulated fraudulently This malicious accessing method
is specifically referred as SQL injection attack.
 Database-driven web applications have become widely
deployed on the Internet, and organizations use them to
provide a broad range of services to their customers. These
applications, and their underlying databases, often contain
confidential, or even sensitive, information, such as customer
and financial records. However, as the availability of these
applications has increased, there has been a corresponding
increase in the number and sophistication of attacks that target
them. One of the most serious types of attack against web
applications is SQL injection. In fact, the Open Web
Application Security Project (OWASP), an international
organization of web developers, has placed SQL injection
attack (SQLIA) at the top of the top ten vulnerabilities that a
web application can have [1]. Similarly, software companies
such as Microsoft have cited SQLIAs as one of the most
critical vulnerabilities that software developers must address
[2]. As the name implies, this type of attack is directed toward
database layer of the web applications. Mechanism of SQL
injection is illustrated in Fig.1 [3]

In this paper, we propose a System that combines the two IDS
techniques, Embezzle and Eccentricity detection techniques, to
defend against SQLIA. The main idea of Web Based Intrusion
Detection system (WEBIDS) framework is to create a profile
for web application that can represent the normal behavior of
application users in terms of SQL queries they submit to the
database. Database logs can be used to collect these legitimate
queries provided that these logs are free of intrusions. We then
use an Eccentricity detection model based on data mining
techniques to detect queries that deviates from the profile of
normal behavior. The queries retrieved from database log are
stored in XML file with predefined structure. We choose XML
format because it is more structured than flat files, more
flexible than matrices, simpler and consume less storage than
databases.

 Association rules will be applied to this XML file to retrieve
relation between each table in the query with each condition in
the selection part. These rules represent the profile of normal
behavior and any deviation from this profile will be considered
attack. In order to better detect SQLIA and to minimize false
positive alerts, WEBIDS system as a second step uses misuse
technique to detect any change in the structure of the query.
Malicious users sometimes don’t change the selection clause
but add another SQL statement or add specific keywords to the
initial query to check the vulnerability of the site to SQLIA or
to perform inference attack. Such types of attack are detected
in the second step of the detection process. By comparing the
structure of the query under test with the corresponding queries
in the XML file the previous malicious actions will be
detected.

This paper is organized as follows. Section II, includes some
related work in web application Vulnerability domains. Section
III, provides a detailed description about the System and its
components. In Section IV, Results and Discussions. Section V
concludes the paper and outlines future work.

II. Literature Survey
 Different researches and approaches have been

presented to address the problem of web attacks against

databases. Considering SQLIA as top most dangerous attacks,

as stated in section I, there has been intense research in

detection and prevention mechanisms against this attack [4,

5].

FOUNDRY JOURNAL[ISSN:1001-4977] VOLUME 27 ISSUE 11

PAGE NO : 62

A general framework for detecting malicious database

transaction patterns using data mining was proposed by

Bertino et al. in [6, 7] to mine database logs to form user

profiles that can model normal behaviors and identify

anomalous transactions in databases with role based access

control mechanisms. The system is able to identify intruders

by detecting behaviors that differ from the normal behavior

of a role in a database. Kamra et al. in [8] illustrated an

enhanced model that can also identify intruders in databases

where there are no roles associated with each user. It

employs clustering techniques to form concise profiles

representing normal user behaviors for identifying suspicious

database activities. Another approach that checks for the

structure of the query to detect malicious database behavior

is the work of Bertino et al. in [9]. They proposed a

framework based on anomaly detection technique and

association rule mining to identify the query that deviates

from normal database application behavior.

 The problem with this framework is that it produces

a lot of rules and represents the queries in very huge

matrices which may affect tremendously on the performance

of rule extraction. Misuse detection technique have been

used by Bandhakavi et al. in [10] to detect SQLIA by

discovering the intent of a query dynamically and then

comparing the structure of the identified query with normal

queries based on the user input with the discovered intent.

The problem with this approach is that it has to access the

source code of the application and make some modifications

to the java virtual machine.

 Recently, applicability and scalability of model

checking approaches in the domain of web applications

started being explored by the research community. In

particular, in 2008, a work describing the QED system was

published [11]. QED identifies XSS and SQL injection

vulnerabilities that arise as a result of the interaction of

multiple modules of a servlet-based web application. The

system uses explicit model checking to find XSS and SQL

injection vulnerabilities and uses a number of heuristics to

scale the approach to large applications. To find vulnerability,

the tool needs to be supplied with a specification of a

vulnerability (written in SQL) and a set of inputs to the

application under test. Then, the Java Pathfinder [12] model

checker is used to execute the application using a sequence

of user requests that are generated based on user input

values provided by an analyst. Vulnerability is found when a

match to a SQL query is found by the model checker. In

general, the approach proposed in this work can be applied

to detect vulnerabilities other than taint-based ones if an

analyst is able to provide the tool with a specification of a

vulnerability specifying patterns of events (such as program

method calls) that need to occur on a program path.

 Hal fond et al. in [13] developed a technique that

uses a model-based approach to detect illegal queries before

they are executed on the database. In its static part, the

technique uses program analysis to automatically build a

model of the legitimate queries that could be generated by

the application. In its dynamic part, the technique uses

runtime monitoring to inspect the dynamically-generated

queries and check them against the statically-built model.

The system WASP proposed by William et al. in [14] tries to

prevent SQL Injection Attack by a method called positive

tainting. In positive tainting, the trusted part of the query

(static string) is not considered for execution and masked as

tainted, while all other inputs are considered. The difficulty in

this case is the propagation of taints in a query across

function calls especially for the user defined functions which

call some other external functions leading to the execution of

a tainted query. Different other researches followed the

same approach in detection of anomalous SQL query

structure in [15, 16].

 The contribution of this paper is a System that

combines Eccentricity and Embezzle detection technique in

order to better detect SQLIA. This System uses association

rules with Eccentricity technique to build the normal

behaviour of application users and detecting anomalous

queries. Moreover, A technique is used to check the

structure of the query to detect any malicious actions that

cannot be detected using detection technique

III. Proposed Method

WEB Based IDS framework is a database intrusion detection
that aims to detect SQLIA at real-time, before queries
execution at the database. WEBIDS is simple and really easy to
implement. During this technique all the data validations rules
are going to be during a secure place. The data validation rules
also will be organized into some XML format and that they are
referred to as XML-rules. Whenever server receives any input
from client the server can verify the whole XML script
supported the verification rules already written within the
server. XML-rules are going to be written on an individual basis
for every kind of incoming XML scripts and therefore the
incoming XML script should succeed the validation method.
This method can primarily divide the data validation of a web
application from the application development division. The
developer at present ought not to worry about the SQL
injection attacks and data validity. The validation parts of data
are going to be maintained by a separate cluster which can
manage the XML-rules. This is often conjointly useful as a
result of the traditional web developers are going to be utterly
unaware regarding the safety rules of the application. WEB
based IDS framework combines the two detection techniques:
Abnormality and Invade. Figure 2 explains the essential flow of
WEBIDS. In a PHP file the database connecting query is fetched
and can submit the query then rather than submitting
straightforward data, it'll submit all the data in XML
format.XML file of query tokens is compared with XML rules by
performing the validation. If the validation is false, then it will
flag the injection if true it will execute the query.

FOUNDRY JOURNAL[ISSN:1001-4977] VOLUME 27 ISSUE 11

PAGE NO : 63

The key idea of our system is as follows. We build a
repository containing set of legitimate queries submitted from
the application user to the database. This repository is a set of
training records. We then use an Abnormality detection
approach based on data mining technique to build a profile of
normal application behavior and indicate queries that deviates
from this normal behavior.

In a second step in the detection process, the framework
checks for the presence of dangerous keywords in the query if
the latter passes the test of Abnormality detection step. We
need this step because sometimes the intent of the attacker is
to identify the security holes in the site or to infer the structure
of the database through the error message returned from the
application and this type of SQLIA is called inference [17, 18].
This type of attack cannot be detected through eccentricity
technique because it doesn’t require change in the conditions
of the original query but it will be discovered if the structure of
the query is compared against its corresponding query in the
repository file.

Based on what previously stated we learn that the System
act in two phases: training phase and detection phase. In the
training phase the repository file will be created and normal
behavior of the application is built. In the detection phase, the
framework uses the Eccentricity and Embezzle techniques to
discover any SQLIA. In the following subsections we will
provide a detailed explanation of the System, its components
and how it works.

Training Phase

During the training phase the training records are collected
from the queries the application send to the database. The
source for obtaining these query traces is the database log
provided that the latter is free of intrusions. The training phase
flow is illustrated in Fig. 3. The challenge here is that to
efficiently encode these queries in order to extract useful
features from them and accordingly build the application
fingerprint. Unlike approach provided in [19], we choose to
encode the queries in XML file. The encoding scheme provided
by Bertino et al. in [19] result in a large, dense, sparse matrices
which may effect on the mining algorithm. XML is more
structured than flat files, is supported by query tools like
XQuery and XPath to extract data [20]. It is simpler and
consumes less space than relational databases and more
flexible than matrices.

It is important to identify accurately the structure of the
XML file that will represent the features extracted from the
query that will contribute in building the application
fingerprint. Consider the following query:

Select SSN, last_name from employee
where first_name=’Suzan’ and
salary>5000

The encoding scheme of the previous query in XML file is
illustrated in Fig. 4. The main advantage of XML format is that
nodes may be duplicated upon need. For example the number
of “project attribute” node may differ from one “Query” node
to another depending on the query itself. This is why it is more
suitable to store queries than databases while maintaining
flexibility and simplicity.

The XML file illustrated in Fig. 4 stores the projection

attributes, the from clause and the predicate clause in a more

detailed way. It is not important to identify the value of the

integer or string literal it is important to determine that there

is an integer or string literal or there is another attribute in the

right hand side. Another file that should be created during the

training phase is the signature file that will be used during the

misuse detection phase. As stated before this file contains
suspicious keywords that may be considered a sign of SQLIA.

The important step in the training phase is to build the
profile representing the application normal behavior. We will
apply association rules [21] on the XML file to extract rules that
represent the normal behavior of application users. The rules
extracted represent relationship between each table in the
query with each predicate in the selection clause.

This is based on an observation that the static part of the
query is the projection attribute and the part that is
constructed during execution is the selection part [19]. We
here add another item to the static part which are the tables

FOUNDRY JOURNAL[ISSN:1001-4977] VOLUME 27 ISSUE 11

PAGE NO : 64

in the from clause. We try to make relation between the static
part and the dynamic part and extract rule with support of
such relation. Any query that will not match rules extracted
and stored in the rules profile will be considered attack. More
details about how the rules are extracted are provided in the
following subsection.

Abnormality Detection Phase

In the previous subsection, we illustrated how the begin
queries are collected and captured in XML file in a form
enabling the framework from creating the database behavior
profile. We apply association rules on the XML file containing
legitimate queries and extract rules that can describe the
normal behavior of application users. The idea behind building
the profile rule is to apply one of association rules algorithms
on previously created XML file to extract relation between
each table in the query with each selection attribute excluding
the literals.

Thus the rules extracted have the following format:

 From LHS

 From RHS

Example:

 Employee name

 Employee place

The rules that exceed the minimum support will be stored
in rules profile. These rules represent the profile of how the
application behaves normally. In a typical database application,
the input supplied by the user construct the where clause of
the query. Meanwhile, the projection clause and the from
clause remain static at the run time. So we create a relation
between the static and the dynamic part of the query and any
change in the where clause by attackers that cannot be derived
from the rules profile will be announced as SQLIA. We decided
to choose the tables in the from clause from the static part of
the query instead of the projection attributes because the
former is more general and contain the latter and thus
generating less rules and make it easier in comparison. Lets
return to our query in the previous subsection and change it a
little bit: select SSN, lname from employee where name=’ “&
fname &” and place= “ & emplace”. If the attacker needs to
retrieve all values from employee table then the following code
will be injected to form this new query:

Select SSN, lname from employee where name=’’ or 1=1

Before executing this query, rules should be extracted first
and compared to the rules in the rules profile. The relation
between tables and attributes will be compared against rules
stored in the profile rules file. The two relations under test from
the previous example are:

Employee name

Employee 1

The first relation exists in the rules profile but no such rule
matches the second relation. So the query is announced as
Eccentric query.

Invade Detection Phase

 In a second step in the detection process and after the
Eccentricity detection phase, comes the role of Embezzle
detection. The need to this step comes from the fact that
SQLIA doesn’t only change the conditions in the query but
it also may provide information about the database
schema or check the vulnerability of the application to
SQL injection. This is done through adding to the query
some keywords that may change the behavior of the
query or return information about the database through
database errors without changing the predicates of the
query. In such case, the Eccentricity detection phase will
not be able to discover such attack. For example consider
the following query:

 Select * from employee where SSN=10

If the attacker just adds a single quote at the end of
the query, this will result in error message that may
inform the attacker that the site is vulnerable to SQLIA.
Another example of attack is just adding the keyword
“order by” to the query without changing the selection
attributes like:

Select * from employee where SSN=10 order by 1

Trying to execute this query several times will give attacker
information about the number of attributes in the table. This
is why this step is needed in the detection process. Moreover,
the framework doesn’t announce the query as anomaly just by
finding these keywords in the query because it may be part of
the legitimate query itself resulting in false positive alarm. This
is why the framework checks for the structure of the query
under test with the corresponding query stored in XML file.
The detection phase flow of the framework in Fig. 5 illustrates
this process.

 These suspicious keywords are stored in file called
“forbidden keywords”. This file contains SQL keywords like
single quote, semicolon, union, order by, exec and their
hexadecimal representation to avoid the different evasion
techniques. After confirming the existence of one or more of
these keywords, we use XQuery to retrieve queries from XML
file with the same projection attributes and same from clause.
Then comparison is done between query under test and the
queries retrieved by XQuery from XML file. If there is no
match, then the query is announced Eccentric.

FOUNDRY JOURNAL[ISSN:1001-4977] VOLUME 27 ISSUE 11

PAGE NO : 65

IIV. Results and Discussions

 In this section we present results and discussions for

eccentricity and embezzle detection. In addition, we provide

a working example illustrating how the WEBIDS framework

performs the detection.
A. Working Example

We provide in this subsection example of the flow of
detection either Eccentricity or Embezzle in this framework.
The following represents example of php file submitted from
application to the database:

<?php

 $name=$_REQUEST['t1'];

mysql_connect("localhost","pw","jnnce");

 mysql_select_db("user");

 $res=mysql_query("select * from
contact where name='$name'");

…………….

…………….

……………..

 Fig 6 Query is Fetched and converted to XML

In Figure 6 the query is fetched from a php file and
Converted to XML

The following represents example of queries submitted
from application to database:

 Select * from Employee where name=$name;

 Select * from Employee where place=$place;

 Select * from Employee where salary=$salary;

The representation of the previous queries in XML file is
illustrated in Fig. 7.

Fig 7 Representation of Query

After applying association rule algorithm like for example
Priory on this XML file, the resulting rules will be stored in rules
profile file in Fig. 7.

Association rules for these definition queries will be as
follows:

Employee name

Employee place

Employee salary

These rules will be compared with the actual query
association rule. Hence the vulnerability is checked.

Example:

 Select * from Employee where name=Mohan;

Employee name

 This query will be ACCEPTED as it matches with the
first definition.

Example:

 Select * from Employee where A=A;

Employee A

This query will be DISCARDED since it is not matched by
any definition.

 Accept and discard format is demonstrated in Fig 8.

 Fig 8 Example of Accept and Discard

In the following we will provide sample of malicious and
legitimate queries.

 Select product_name, description from product where
product_id=5’

The first step in the framework is to identify relation
between tables and selection attributes in the query.

Product product_id

Second, the framework searches in the rules profile for this
relation. It already exists. But this is not the end of the
detection flow. The second step is to check for suspicious
keywords in the query. The query already contains one of the
suspicious keyword which is single quote.

FOUNDRY JOURNAL[ISSN:1001-4977] VOLUME 27 ISSUE 11

PAGE NO : 66

So XQuery language is used to extract queries from the
XML file with same projection attributes and same from
clause. By comparing the structure of the query under test and
query returned from the XML file we will find that query
contain the single quote and thus it is announced as Eccentric.

 V. Conclusion and Future Work

Database intrusion is a major threat to any organization
storing valuable and confidential data in databases. We have
introduced a System based on Eccentricity and Embezzle
detection for discovering SQLIA. Detection is done by
validating the SQL queries using general validation procedure
based on XML rules and the nature of the injection type. The
concepts explained in this work assist the Developer to modify
the SQL statements and make the code attack free. We
conclude by highlighting the robust features of the efficient
WEBIDS, which can detect the error during the development
statically and can protect web applications from the future
SQL injection.

We believe that the ideas presented in this research work
can be further extended to include new injection types to
include detection against other attacks like cross site scripting.
This work also paves way for the development of vulnerability
detection services, which can be used by developers to detect
vulnerability spots in the source code. We feel the area of SQL
injection vulnerabilities is wide open for research.

References
[1] http://www.owasp.org/index.php, OWASP Top 10-2010

document
[2] M. Howard and D. LeBlanc, “Writing Secure Code”,

Microsoft Press,2002
[3] http://www.ipa.go.jp/security/english/virus/press/2008

05/E_PR200805.html
[4] Kindy, D.A.; Pathan, A.K, “A survey on SQL injection:

Vulnerabilities, attacks, and prevention techniques”, in
proceedings of IEEE 15th International Symposium on
Consumer Electronics (ISCE), 2011

[5] N. Khochare, S. Chalurkar ,S. Kakade, B.B. Meshramm,
“Survey on SQL Injection attacks and their
countermeasures”, International Journal of
Computational Engineering & Management (IJCEM), Vol.
14, October 2011

[6] Bertino, E., Kamra, A, Terzi, E., and Vakali, A, “Intrusion
detection in RBAC-administered databases”, in the
Proceedings of the 21st Annual Computer Security
Applications Conference, 2005.

[7] Kamra A, Bertino, E., and Lebanon, G.,”Mechanisms for
Database Intrusion Detection and Response”, in the
Proceedings of the 2nd SIGMOD PhD Workshop on
Innovative Database Research, 2008

[8] Kamra A, Terzi E., and Bertino, E.,“Detecting anomalous
access patterns in relational databases”, the VLDB
JournalI VoU7, No. 5, pp.1063-1077, 2009

[9] Bertino, E., Kamra, A, and Early, J., “Profiling Database
Application to Detect SQL Injection Attacks”, In the
Proceedings of 2007 IEEE International Performance,
Computing, and Communications Conference, 2007.

[10] Bandhakavi, S., Bisht, P., Madhusudan, P., and
Venkatakrishnan V.,

“CANDID: Preventing sql injection attacks using dynamic
candidate evaluations”, in the Proceedings of the 14th
ACM Conference on Computer and Communications
Security, 2007

[11] M. Martin and M. Lam. Automatic Generation of XSS and
SQL Injection At-tacks with Goal-Directed Model

Checking. In Proceeding of the 17th USENIX Security
Symposium, pages 31–43, July 2008

[12] Java pathfinder. http://javapathfinder.sourceforge.net/
[13] Halfond, W. G. and Orso, A , “AMNESIA: Analysis and

Monitoring for Neutralizing SQL-Injection Attacks”, in
Proceedings of the 20th

IEEE/ACM international Conference on Automated
Software Engineering, 2005

[14] William G.J. Halfond, Alessandro Orso, and Panagiotis
Manolios, “WASP: Protecting Web Applications Using
Positive Tainting and Syntax-Aware Evaluation”, IEEE
Transactions on Software Engineering, Vol. 34, No. 1, pp
65-81, 2008

[15] Buehrer, G., Weide, B. w., and Sivilotti, P. A, “Using Parse
Tree Validation to Prevent SQL Injection Attacks”, in
Proceedings of the 5th international Workshop on
Software Engineering and Middleware, 2005

[16] Liu, A, Yuan, Y., Wijesekera, D., and Stavrou, A,
“SQLProb:A Proxy-based Architecture towards Preventing
SQL Injection Attacks”, in Proceedings of the 2009 ACM
Symposium on Applied Computing, 2009

[17] W.G.Halfond, J.Viegas, and A.Orso, “A classification of
SQL-Injection Attacks and Countermeasures”, in
proceeding of the International

Symposium on Secure Software Engineering (ISSSE), 2006

[18] David Litchfield, “Data-mining with SQL Injection and
Inference”,An NGSSoftware Insight Security Research,
September 2005

[19] Bertino, E., Kamra, A, and Early, J., “Profiling Database
Application to Detect SQL Injection Attacks”, In the
Proceedings of 2007 IEEE International Performance,
Computing, and Communications Conference, 2007

[20] World Wide Web Consortium. XQuery 1.0: An XML Query
Language (W3C Working Draft).
http://www.w3.org/TR/2002/WDxquery-20020816, Aug.
2002.

[21] Han J., Kamber M., “Data Mining: Concepts and
Techniques”, Maurgan Kaufmann,2ndedition,2000

FOUNDRY JOURNAL[ISSN:1001-4977] VOLUME 27 ISSUE 11

PAGE NO : 67

