DISCRETE AND INDISCRETE (4, 2)-FUZZY TOPOLOGICAL STRUCTURES

¹S.V. Manemaran & ²R. Nagarajan

¹Professor, Department of Mathematics, Bharath Institute of Science and Technology, Bharath Institute of Higher Education and Research, Chennai, Tamilnadu, India.

²Professor, Department of Mathematics, J.J. College of Engineering and Technology, Tiruchirappalli, Tamilnadu, India.

Abstract: In this paper, we study the concept of (4,2)-fuzzy topological properties of such algebras such as connectedness, strong connectedness and compact Haussdorff space. We also obtain the characteristic of the homomorphic image and inverse image of (4,2)-fuzzy topological BCC-ideals (BCK-ideals) of BCC-algebras (BCK-algebras).

2020 AMS classification: 03G25, 06F35, 08A72.

Keywords: binary operations, BCK-algebra, BCC-algebra, (4,2)-fuzzy set, (4,2)-fuzzy topology, homomorphism, pre image, image, BCC-ideal, connected.

1. Introduction: In classical set theory, the membership of elements in a set is assessed in binary terms according to a bivalent condition: an element either belongs or does not belong to the set. As an extension, fuzzy set theory (See [22]) permits the gradual assessment of the membership of elements in a set; this is described with the aid of a membership function valued in the real unit interval [0; 1]. As a generalization of fuzzy set, Atanassov [1] created intuitionistic fuzzy set. Intuitionistic fuzzy set is widely used in all elds (See [4, 5, 12, 18] for applications in algebraic structures). In 2013, Yager [19, 20, 21] introduced Pythagorean fuzzy set and compared it with intuitionistic fuzzy set. Pythagorean fuzzy set is a new extension of intuitionistic fuzzy set that conducts to simulate the vagueness originated by the real case that might arise in the sum of membership and non-membership is bigger than 1. Pythagorean fuzzy set is applied to groups (See [2]), UP-algebras (See [15]) and topological spaces (See [14]). Senapati et al. [16] introduced Fermatean fuzzy set which is another extension of intuitionistic fuzzy sets and it is applied to groups (See [17]). Ibrahim et al. [9] introduced (3; 2)-fuzzy sets and applied it to topological spaces. In this paper, we study the concept of (4,2)-fuzzy topological properties of such algebras such as connectedness, strong connectedness and compact Haussdorff space. We also obtain the characteristic of the homomorphic image and

PAGE NO: 162

inverse image of (4,2)-fuzzy topological BCC-ideals (BCK-ideals) of BCC-algebras (BCK-algebras).

2. Preliminaries and Various Basic Concept of BCC-algebras(BCK-algebras)

In this section, we first review some definitions and properties which will be used in the sequel.

A non-empty set G with a constant 0 and binary operation * is called a BCC-algebra if it satisfies the following conditions:

a)
$$(((x*y)*(z*y))*(x*y) = 0)$$

- b) x * x = 0
- c) 0 * x = 0
- d) x * 0 = 0
- e) x * y = 0, $y * x = 0 \Rightarrow x = y$

for all x, y, $z \in G$. In BCC-algebra, the following equality holds (x * y) * x = 0.

Obviously, any BCK-algebra is BCC-algebra but there exist BCC-algebras which are not necessarily BCK-algebra. We note that a BCC-algebra is BCK-algebra if and if only, it satisfies the equality (x * y) * z = (x * z) * y.

A non-empty subset 'S' of a BCK-algebra 'G' is called a sub algebra of G if it is closed under the BCC-operation. Such algebra contains the constant 0 and it is clearly a BCC-algebra, but some sub algebras may be also BCK-algebras. Moreover, there exit BCC-algebras which all sub algebras are BCK-algebras.

A mapping $\phi: G_1 \to G_2$ of BCC-algebras is called a homomorphism if $\phi(x*y) = \phi(x)*\phi(y)$ holds, for all $x,y \in G_1$.

For a non-empty given set G, let I be the closed unit interval [0, 1]. Then, an (4,2)-fuzzy set is an object of the form $A = \{\langle x, \delta_A^4(x), \lambda_A^2(x) \rangle / x \in G\}$, when the mappings

 $\delta_A^{\ 4}:G \to I \ \text{and} \ \lambda_A^{\ 2}:G \to I \ \text{denote the degree of membership (namely, } \delta_A(x)) \ \text{and the degree of non-membership (namely, } \lambda_A(x)) \ \text{of each element} \ x \in G \ \text{to the object 'A' respectively satisfying } 0 \le \delta_A^{\ m}(x) + \lambda_A^{\ n}(x) \le 1 \ \text{for all } x \in G.$

The complement of the (4,2)-fuzzy set is $A^C = \{\langle x, \lambda_A^{\ 2}(x), \delta_A^{\ 4}(x) \rangle / x \in G \}$. Obviously, every fuzzy A on a non-empty G is an (4, 2)-fuzzy set of the form $A = \{\langle x, \delta_A^{\ 4}(x), 1 - \lambda_A^{\ 2}(x) \rangle / x \in G \}$. For the sake of simplicity, we just write

$$A = \langle {\delta_A}^4, {\lambda_A}^4 \rangle \text{ instead of } A = \{\langle x, \delta_A(x), \lambda_A(x) \rangle / \ x \in G\}.$$

The (4,2)-fuzzy sets $0 \sim$ and $1 \sim$ in G are defined by

 $0 \sim = \{(x, 0, 1) : x \in G\}$ and $1 \sim = \{(x, 1, 0) : x \in G\}$, respectively.

If φ is a mapping which maps a set G_1 into another set G_2 , then the following statement hold:

- (a) If $B = \{\langle y, \delta_B^4(y), \lambda_B^2(y) \rangle / y \in G_2 \}$ is an (4,2)-fuzzy set in G_2 , then the pre image of B under φ , denoted by $\varphi^{-1}(B)$, is still an (4,2)-fuzzy set in G_1 , we now write $\varphi^{-1}(B) = \{\langle x, \varphi^{-1}(\delta_B)(x), \varphi^{-1}(\lambda_B)(x) \rangle / x \in G_1 \}.$
- (b) If $A = \{\langle x, \delta_A^{\ 4}(x), \lambda_A^{\ 2}(x) \rangle / \ x \in G_1 \}$ in an (4,2)-fuzzy set in G_1 , then the image of A under ϕ , denoted by $\phi(A)$, is also an (4,2)-fuzzy set in G_2 , which is defined by $\phi(A) = \{\langle y, \phi_{sup}(\delta_A)(y), \phi_{inf}(\lambda_A)(y) \rangle : y \in G_2 \}, \text{ where}$

$$\begin{split} \phi_{sup}(\delta_A)(y) &= \begin{cases} \sup_{x \in \, \phi^{-1}(y)} \delta_A(x) \,, & \text{if } \phi^{-1}(y) \neq 0, \\ 0, & \text{else where,} \end{cases} \\ \phi_{inf}(\lambda_A)(y) &= \begin{cases} \inf_{x \in \, \phi^{-1}(y)} \lambda_A(x) \,, & \text{if } \phi^{-1}(y) \neq 0, \\ 0, & \text{else where,} \end{cases} \end{split}$$

for each $y \in G_2$.

Proposition-2.1: Let A, A_i ($i \in I$)be (4,2)-fuzzy set in G_1 and B an (4,2)-fuzzy set in G_2 . If $\phi: G_1 \to G_2$ is a function, then the following properties hold for the function ϕ :

- (a) If φ is surjective, then $\varphi(\varphi^{-1}(B)) = B$.
- (b) $\phi^{-1}(\bigcup_{i=1}^{n} A_i) = \bigcup_{i=1}^{n} \phi^{-1}(A_i)$.
- (c) $\varphi^{-1}(1\sim) = 1\sim$.
- (d) $\phi^{-1}(0\sim) = 0\sim$.
- (e) $\varphi(1\sim) = 1\sim$, if φ is surjective
- (f) $\varphi(0\sim) = 0\sim$.

Definition-2.2: An (4,2)-fuzzy topology on a non-empty set G is a family τ of (4,2)-fuzzy sets in G which satisfies the following conditions:

- (i) $0 \sim$, $1 \sim \in \tau$.
- (ii) If $G_1, G_2 \in \tau$, then $G_1 \cap G_2$.
- (iii) If $G_i \in \tau$ for all $j \in J$, then $\bigcup_{i \in I} G_i \in \tau$.

The pair (G, τ) is called an (4,2)-fuzzy topological space and any (4,2)-fuzzy set in τ is called an (4,2)-fuzzy open sets in G. The topology τ on a (4,2)-fuzzy topological space is said to be an indiscrete (4,2)-fuzzy topology if it's only element are $0\sim$ and $1\sim$. On the other hand, (4,2)-fuzzy topology τ on a space G is said to be discrete (4,2)-fuzzy topology if the topology (4,2)-fuzzy topology τ contains all (4,2)-fuzzy subsets of G.

If A is an (4,2)-fuzzy set in an (4,2)-fuzzy topological space (G, τ) , then the induced (4,2)-fuzzy topological space on A is the family of (4,2)-fuzzy sets in A which are the intersection with A of (4,2)-fuzzy sets in G. The induced (4,2)-fuzzy topology is denoted by τ_A , and the pair (A, τ_A) is called an fuzzy subspace of (G, τ) .

Let (G_1, τ_1) and (G_2, τ_2) be two (4,2)-fuzzy topological spaces and $\varphi \colon (G_1, \tau_1) \to (G_2, \tau_2)$ a function. Then φ is said to be (4,2)-fuzzy continuous function if and only if the pre image of each (4,2)-fuzzy set in τ_2 is an (4,2)-fuzzy set in τ_1 . Let (G_1, τ_1) and (G_2, τ_2) be two (4,2)-fuzzy topological spaces and $\varphi \colon (G_1, \tau_1) \to (G_2, \tau_2)$ a function. Then φ is said to be (4,2)-fuzzy open if and only if the image of each (4,2)-fuzzy set in τ_1 is an (4,2)-fuzzy set in τ_2 .

3. (4,2)-fuzzy topological sub algebras

Definition-3.1: An (4,2)-fuzzy set $A = \langle \delta_A^4, \lambda_A^2 \rangle$ in G is called (4,2)-fuzzy sub algebra of G if it satisfies the following conditions;

$$FS1: \delta_A^4(x * y) \ge \min\{\delta_A^4(x), \delta_A^4(y)\}$$

$$FS2: \lambda_A^{\ 2}(x*y) \leq max\big\{\lambda_A^{\ 2}(x), \lambda_A^{\ 2}(y)\big\}, \text{ for all } x,y \in G.$$

Example-3.2: Let $G = \{0, 1, 2, 3, 4\}$ be a BCC-algebra with the following Cayley table.

+	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	1	0	0
4	4	3	4	3	0

Let $A = \langle \delta_A^4, \lambda_A^2 \rangle$ be an (4,2)-fuzzy set in G defined by $\delta_A^4(4) = 0.07$, $\delta_A^4(x) = 0.6$, $\lambda_A^2(x) = 0.5$ and $\lambda_A^2(4) = 0.06$ for all $x \neq d$. Then A is (4,2)-fuzzy sub algebra of G.

Definition-3.3: Let τ_1 and τ_2 be an (4,2)-fuzzy topologies on BCC-algebras G_1 and G_2 respectively. A function $\varphi: (G_1, \tau_1) \to (G_2, \tau_2)$ is called an (4,2)-fuzzy continuous function which maps (G_1, τ_1) and (G_2, τ_2) if φ satisfies the following conditions:

- (i) For every $A \in \tau_2$, $\varphi^{-1}(A) \in \tau_1$.
- (ii) For every (4,2)-fuzzy sub algebra A (of G_2) in τ_2 , $\varphi^{-1}(A)$ is (4,2)-fuzzy sub algebra (of G_1) in τ_1 .

Proposition-3.4: If in τ_1 is an (4,2)-fuzzy topology on a BCC-algebra G_1 and τ_2 is an (4,2)-fuzzy topology on a BCC-algebra G_2 , then every function φ : $(G_1, \tau_1) \to (G_2, \tau_2)$ is a (4,2)-fuzzy continuous function.

Proof: Since τ_2 is an indiscrete (4,2)-fuzzy topology, $\tau_2 = (0 \sim 1 \sim)$..

Let $\phi: G_1 \to G_2$ be any mapping of BCC-algebras. Then, every member of τ_2 is an (4,2)-fuzzy topology on a BCC-algebra G_2 .

We now show that φ is (4,2)-fuzzy continuous function. We only need to prove that for every $A \in \tau_2$, $\varphi^{-1}(A) \in \tau_1$.

For this purpose, we let $0 \sim \epsilon \tau_2$. Then for any $x \in G_1$, we have

$$\varphi^{-1}(0\sim)(x) = 0\sim(\varphi(x)) = 0 = 0\sim(x)$$
. This show that $(\varphi^{-1}(0\sim)) = 0\sim \in \tau_1$.

On the other hand, if $1 \sim \epsilon \tau_2$ and $x \in G_1$, then

$$\varphi^{-1}(1\sim)(x) = 1\sim(\varphi(x)) = 1 = 1\sim(x)$$
. Thus $(\varphi^{-1}(1\sim)) = 1\sim \in \tau_1$.

This show that φ is indeed an (4,2)-fuzzy continuous function of G_1 to G_2 .

Theorem-3.5: Let τ_1 and τ_2 be any two discrete (4,2)-fuzzy topologies defined on the BCC-algebras G_1 and G_2 respectively. Then every homomorphism $\varphi: (G_1, \tau_1) \to (G_2, \tau_2)$ is an (4,2)-fuzzy continuous function.

Proof: Since τ_1 and τ_2 are discrete (4,2)-fuzzy topologies on the BCC-algebras G_1 and G_2 respectively, we have $\phi^{-1}(A) \in \tau_1$ for every $A \in \tau_2$.

We note that φ is not the usual inverse homomorphism from G_2 to G_1 .

Let $A = \langle \delta_A^{\ 4}, \lambda_A^{\ 2} \rangle$ be an(4,2)-fuzzy sub algebra (of G_2) in τ_2 . Then for $x,y \in G_1$, we have, $\left(\phi^{-1}\left(\delta_A^{\ 4}\right)\right)(x*y) = \delta_A^{\ 4}\left(\phi(x*y)\right)$ $= \delta_A^{\ 4}\left(\phi(x)*\phi(y)\right)$ $\geq \min\left\{\delta_A^{\ 4}\left(\phi(x)\right), \delta_A^{\ 4}\left(\phi(y)\right)\right\}$ $= \min\left\{\left(\phi^{-1}\left(\delta_A^{\ 4}\right)\right)(x), \left(\phi^{-1}(4)\right)(y)\right\} \text{ and }$ $\left(\phi^{-1}\left(\lambda_A^{\ 2}\right)\right)(x*y) = \lambda_A^{\ 2}\left(\phi(x*y)\right)$ $= \lambda_A^{\ 2}\left(\phi(x)*\phi(y)\right)$ $\leq \max\{\lambda_A^{\ 2}\left(\phi(x)\right), \lambda_A^{\ 2}\left(\phi(y)\right)\right\}$

Hence $\varphi^{-1}(A)$ is an (4,2)-fuzzy sub algebra (of G_1) in τ_1 and consequently, φ is an (4,2)-fuzzy continuous function which maps (G_1, τ_1) to (G_2, τ_2) .

Definition-3.6: Let (G_1, τ_1) and (G_2, τ_2) be (4,2)-fuzzy topology sub algebras. A function

 $= \max \left\{ \left(\phi^{-1} \left(\lambda_A^2 \right) \right) (x), \left(\phi^{-1} \left(\lambda_A^2 \right) \right) (y) \right\}$

 $\varphi: (G_1, \tau_1) \to (G_2, \tau_2)$ is said to be an (4,2)-fuzzy homomorphism if it satisfies the following conditions:

- ϕ is an injective and surjective function.
- φ is fuzzy continues function which maps G_1 to G_2 .
- φ^{-1} is fuzzy continues function which maps G_2 to G_1 .

Definition-3.7: Let τ be an (4,2)-fuzzy topology of BCC-algebra G. An (4,2)-fuzzy topology (G,τ) is an (4,2)- fuzzy Hausdorff space if and only if for any discrete (4,2)-fuzzy point $x_1, x_2 \in G$, there exits (m, n)- fuzzy topology $F_1 = \langle \delta_{F_1}^4, \lambda_{F_1}^2 \rangle$ and $F_2 = \langle \delta_{F_2}^4, \lambda_{F_2}^2 \rangle$ such that $\delta_{F_1}^4(x_1) = 1$, $\lambda_{F_1}^2(x_1) = 0$, $\delta_{F_2}^4(x_2) = 1$, $\lambda_{F_2}^2(x_2) = 0$ and $F_1 \cap F_2 = 0$ ~.

Theorem-3.8: Let τ_1 and τ_2 be (4,2)-fuzzy topologies on the BCC-algebras G_1 and G_2 respectively and let φ : $(G_1, \tau_1) \to (G_2, \tau_2)$ be an (4,2)-fuzzy homomorphism. Then G_1 is an (4,2)-fuzzy Hausdorff space if and only if G_2 is an (4,2)-fuzzy Hausdorff space.

Proof: Suppose that G_1 is a (4,2)-fuzzy Hausdorff space.

Let x_1, x_2 be the (4,2)-fuzzy point in τ_2 with $x \neq y$ where $x, y \in G_1$.

Then $\varphi^{-1}(x) \neq \varphi^{-1}(y)$ because φ is injective function.

$$\begin{split} \text{For } z \in G_1, \left(\phi^{-1}(x_1)\right)(z) &= x_1 \left(\phi(z)\right) \\ &= \begin{cases} s \in [0,1], & \text{if } \phi(z) = x \\ 0, & \text{if } \phi(z) \neq x \end{cases} = \begin{cases} s \in [0,1], & \text{if } z = \phi^{-1}(x) \\ 0, & \text{if } z \neq \phi^{-1}(x) \end{cases} \\ &= \left(\phi^{-1}(x)\right)_1(z). \end{split}$$

That is, $(\phi^{-1}(x_1))(z) = (\phi^{-1}(x))_1(z)$ for all $z \in G$. Hence $\phi^{-1}(x_1) = (\phi^{-1}(x))_1$. Similarly we can also prove that $\phi^{-1}(x_2) = (\phi^{-1}(x))_2$. Now by the definition of an (4,2)-fuzzy Hausdorff space, there exist (4,2)-fuzzy order F_1 and F_2 of $\phi^{-1}(x_1)$ and $\phi^{-1}(x_2)$ respectively such that $F_1 \cap F_2 = 0 \sim$. Since ϕ is an (4,2)-fuzzy continuous map from G_2 to G_1 , there exist (4,2)-fuzzy orders $\phi(F_1)$ and $\phi(F_2)$ of x_1 and x_2 respectively such that $\phi(F_1) \cap \phi(F_2) = \phi(F_1 \cap F_2) = \phi(0 \sim) = 0 \sim$. This implies that G_2 is a (4,2)-fuzzy Hausdorff space.

Conversely, if (G_2, τ_2) is a (4,2)-fuzzy Hausdorff space, then by using a similar argument as above and by the fact that both φ and φ^{-1} are (4,2)-fuzzy continuous functions, we can easily prove that (G_1, τ_1) is an (4,2)-fuzzy Hausdorff space. Hence the proof.

Definition-3.9: Let τ be an (m, n)- fuzzy topology on a BCC-algebra G. Then (G, τ) is called an (4,2)-fuzzy C₅-disconnected space if there exists an (4,2)-fuzzy open and closed set F such that F \neq 0 \sim and F \neq 1 \sim .

Theorem-3.10: Let τ_1 and τ_2 be the (4,2)-fuzzy topology sub algebras G_1 and G_2 respectively and let $\varphi: G_1 \to G_2$ be an (4,2)-fuzzy continuous surjective function. If (G_1, τ_1) is an (4,2)-fuzzy C_5 -connected space then (G_2, τ_2) is also an (4,2)-fuzzy C_5 -connected space.

Proof: Assume that (G_2, τ_2) is a (4,2)- fuzzy C_5 -disconnected. Then there exist an (4,2)-fuzzy open and closed set F such that $F \neq 0 \sim$ and $F \neq 1 \sim$.

Since φ is an (m, n)- fuzzy continuous function $\varphi^{-1}(F)$ is both (4,2)-fuzzy open and (4,2)-fuzzy closed set. In this case $\varphi^{-1}(F) \neq 0 \sim \text{ or } \varphi^{-1}(F) \neq 1 \sim$.

Since,
$$F = \phi(\phi^{-1}(F)) = \phi(0\sim) = 0\sim \text{ and } F = \phi(\phi^{-1}(F)) = \phi(1\sim) = 1\sim.$$

We see that these results contradict to our assumption.

Hence the space (G_2, τ_2) must be (4,2)-fuzzy C_5 -connected space.

Definition-3.11: Let τ be an (4,2)-fuzzy topology on a BCC-algebra G. An (4,2)-fuzzy topology (G, τ) is called an (4,2)-fuzzy disconnected space if there exist (4,2)- fuzzy open sets $A \neq 0 \sim$ and $B \neq 0 \sim$ such that $A \cup B = 0 \sim$. Naturally, we call the set (G, τ) an (m, n)- fuzzy connected if (G, τ) is not (4,2)-fuzzy disconnected.

Theorem-3.12: Let τ_1 and τ_2 be (m, n)- fuzzy topology set on BCC-algebras G_1 and G_2 respectively and let $\varphi: (G_1, \tau_1) \to (G_2, \tau_2)$ be an (4,2)-fuzzy continuous and surjective function. If G_1 is an (4,2)-fuzzy connected space, then so is G_2 .

Proof: Suppose that G_2 is an (m, n)- fuzzy disconnected, then there exists (4,2)-fuzzy open sets $C \neq 0 \sim$ and $D \neq 0 \sim$ in G_2 such that $C \cup D = 1 \sim$ and $C \cap D = 0 \sim$.

Since φ is (4,2)-fuzzy continuous function, $A = \varphi^{-1}(C)$ and $B = \varphi^{-1}(D)$ are (m, n)- fuzzy open sets in G_1 .

Clearly, C \neq 0~ implies that A = $\phi^{-1}(C)\neq$ 0~ , and D \neq 0~ implies that B = $\phi^{-1}(D)\neq$ 0~ .

Now
$$C \cup D = 1 \sim$$
.

$$\Rightarrow \varphi^{-1}(C \cup D) = \varphi^{-1}(1 \sim).$$

$$\Rightarrow \varphi^{-1}(C) \cup \varphi^{-1}(D) = 1 \sim \text{ implies A} \cup B = 1 \sim \text{ and }$$

$$C \cap D = 0 \sim \Rightarrow \varphi^{-1}(C \cap D) = \varphi^{-1}(0 \sim)$$

$$\Rightarrow \varphi^{-1}(C) \cap \varphi^{-1}(D) = 0 \sim \text{implies } A \cap B = 0 \sim .$$

This clearly contradicts our hypothesis.

Hence G_2 is an (4,2)-fuzzy connected space.

Definition-3.13: An (m, n)- fuzzy topology space (G, τ) is said to be an (4,2)-fuzzy strongly connected, if there exists no non-zero (4,2)-fuzzy closed sets A and B in G such that $\delta_A^4 + \delta_B^4 \le 1$ and $\lambda_A^2 + \lambda_B^2 \ge 1$.

The following fact follows immediately from the definition.

Proposition-3.14: G is (4,2)-fuzzy strongly connected if and only if there exist an (4,2)-fuzzy open sets A and B in G such that $A \neq 1 \sim \neq B$ and $\delta_A^4 + \delta_B^4 \geq 1$, $\lambda_A^2 + \lambda_B^2 \leq 1$.

We now formulate the following theorem.

Theorem-3.15: Let τ_1 and τ_2 be (4,2)-fuzzy topology set on BCC-algebras G_1 and G_2 respectively and let $\varphi: (G_1, \tau_1) \to (G_2, \tau_2)$ be an (4,2)- fuzzy continuous and surjective mapping. If G_1 is an (4,2)-fuzzy strongly connected, then so is G_2 .

Proof: Suppose that G_2 is not an (4,2)-fuzzy strongly connected. Then there exists (4,2)-fuzzy open sets $C \neq 0 \sim$ and $D \neq 0 \sim$ so that $\delta_C^4 + \delta_D^4 \leq 1$ and $\delta_C^2 + \delta_D^2 \geq 1$. Since ϕ is an (4,2)-fuzzy continuous function, $\phi^{-1}(C)$ and $\phi^{-1}(D)$ are (4,2)-fuzzy closed sets in G_1 . Now we can deduce the following equalities;

$$\begin{split} \delta_{\phi^{-1}(C)}^4 + \delta_{\phi^{-1}(D)}^4 &= \phi^{-1}(\delta_C^4) + \phi^{-1}(\delta_D^4) \\ &= \delta_C^4 \circ \phi + \delta_D^4 \circ \phi \leq 1 \text{ (Since } \delta_C^4 + \delta_D^4 \leq 1), \\ \lambda_{\phi^{-1}(C)}^2 + \lambda_{\phi^{-1}(D)}^2 &= \phi^{-1}(\lambda_C^2) + \phi^{-1}(\lambda_D^2) \\ &= \lambda_C^2 \circ \phi + \lambda_D^2 \circ \phi \geq 1 \text{ (Since } \lambda_C^2 + \lambda_D^2 \geq 1). \end{split}$$

 $\phi^{-1}(C) \neq 0 \sim$ and $\phi^{-1}(D) \neq 0 \sim$. This contradicts our hypothesis. Hence G_2 is an (4,2)-fuzzy strongly connected space.

Definition-3.16: Let τ be an (4,2)-fuzzy topology on a BCC-algebra G and A be an (4,2)-fuzzy BCC-algebra with (4,2)-fuzzy topology τ_A . Then A is called an (4,2)-fuzzy topological BCC-sub algebra if the self-mapping γ_a : $(A, \tau_A) \to (A, \tau_A)$ defined by

 $\gamma_a(x) = x * a$ for all $a \in G$, is a Relatively (4,2)-fuzzy continuous function.

Theorem-3.17: Let $\varphi: G_1 \to G_2$ be a homomorphism of BCC-algebras and τ and τ^* be (4,2)-fuzzy topologies on G_1 and G_2 respectively such that $\tau = \varphi^{-1}(\tau^*)$. If B is an (4,2)-fuzzy topological BCC-sub algebra in G_2 , then $\varphi^{-1}(B)$ is an (4,2)-fuzzy topological BCC-sub algebra in G_1 .

Theorem-3.18: Let $\varphi: G_1 \to G_2$ be an isomorphism of BCC-algebras. Let τ and τ^* be the respectively (4,2)-fuzzy topologies on the spaces G_1 and G_2 such that $\tau = \varphi^{-1}(\tau^*)$. If A is an (4,2)-fuzzy topological BCC-sub algebra in G_1 , then $\varphi^{-1}(A)$ is an (4,2)-fuzzy topological BCC-sub algebra in G_2 .

4. (4,2)-fuzzy topological BCC-ideals

Definition-4.1: An (4,2)-fuzzy set $A = \{\langle \delta_A, \lambda_A \rangle\}$ in a BCK-algebra G is called an (4,2)-fuzzy BCK-ideal of G if the following conditions are satisfied;

- (i) $\delta_A^4(0) \ge \delta_A^4(x)$ and $\lambda_A^2(0) \le \lambda_A^2(x)$,
- (ii) $\delta_A^4(x) \ge \min\{\delta_A^4(x * y), \delta_A^4(y)\}$
- (iii) $\lambda_A^2(x) \le \max\{\lambda_A^2(x*y), \lambda_A^2(y)\}\$ for all $x, y \in G$.

Definition-4.2: An (4,2)-fuzzy set $A = \langle \delta_A, \lambda_A \rangle$ in G is called an (4,2)-fuzzy BCC-ideal of G if it satisfies the following conditions;

$$(4,2) F_1: \delta_A^4(0) \ge \delta_A^4(x) \text{ and } \lambda_A^2(0) \le \lambda_A^2(x)$$

$$(4,2) F_2: \delta_A^4(x*z) \ge \min\{\delta_A^4((x*y)*z), \delta_A^4(y)\}$$

$$(4,2) F_3: \lambda_A^2(x*z) \le \max\{\lambda_A^2((x*y)*z), \lambda_A^2(y)\}$$
 for all $x, y, z \in G$.

Putting z = 0 in (m, n) F_2 and (4,2) F_3 , then we can easily see that an (4,2)-fuzzy BCC-ideal is an (m, n)- fuzzy BCK-ideal. However, the converse does not hold.

Example-4.3: Let $G = \{0, 1, 2, 3, 4, 5\}$ be a BCC-algebra with the following Cayley table;

+	0	1	2	3	4	5
0	0	0	0	0	0	0
1	1	0	0	0	0	1
2	2	2	0	0	1	1
3	3	2	1	0	1	1
4	4	4	4	4	0	1
5	5	5	5	5	5	0

Let $A = \langle \delta_A, \lambda_A \rangle$ be an (4,2)-fuzzy set in G defined by $\delta_A^4(5) = 0.02$, $\delta_A^4(x) = 0.4$,

 $\lambda_A^2(5) = 0.2$ and $\lambda_A^2(x) = 0.04$ for all $x \neq 5$, then A is an (4,2)-fuzzy BCC-ideal of a BCC-algebra G.

Theorem-4.4: Let φ be a homomorphism of a BCC-algebra G_1 into a BCC-algebra G_2 and B be an (4,2)-fuzzy BCC-ideal of G_2 . Then $\varphi^{-1}(B)$ is an (4,2)-fuzzy BCC-ideal of G_1 .

Proof: It can be easily seen that

$$\delta_{\omega^{-1}(B)}^4(0) \geq \delta_{\omega^{-1}(B)}^4(x) \text{ and } \lambda_{\omega^{-1}(B)}^2(0) \leq \lambda_{\omega^{-1}(B)}^2(x) \text{ , for all } x \in G_1.$$

For any $x, y, z \in G_1$, we can deduce the following

$$\begin{split} \delta_{\phi^{-1}(B)}^4(x*z) &= \delta_B^4 \big(\phi(x*z) \big) \\ &\geq \min \left\{ \delta_B^4 \left(\phi \big((x*y)*z \big) \right), \delta_B^4 \big(\phi(y) \big) \right\} \\ &= \min \left\{ \delta_B^4 \left(\left(\phi(x)*\phi(y) \right) * \phi(z) \right), \delta_B^4 \big(\phi(y) \big) \right\} \\ &= \min \left\{ \delta_{\phi^{-1}(B)}^4 \big((x*y)*z \big), \delta_{\phi^{-1}(B)}^4(y) \right\}. \end{split}$$

Also

$$\begin{split} \lambda_{\phi^{-1}(B)}^2(x*z) &= \lambda_B^2 \big(\phi(x*z) \big) \\ &\leq \max \left\{ \lambda_B^2 \left(\phi \big((x*y)*z \big) \right), \lambda_B^2 \big(\phi(y) \big) \right\} \\ &= \max \left\{ \lambda_B^2 \left(\left(\phi(x)*\phi(y) \right) * \phi(z) \right), \lambda_B^2 \big(\phi(y) \big) \right\} \\ &= \max \left\{ \lambda_{\phi^{-1}(B)}^2 \big((x*y)*z \big), \lambda_{\phi^{-1}(B)}^2(y) \right\} \end{split}$$

Hence $\varphi^{-1}(B)$ is an (4,2)-fuzzy BCC-ideal of G_1 .

Corollarly-4.5: Let φ be a homomorphism of a BCC-algebra G_1 into a BCC-algebra G_2 and B be an (4,2)-fuzzy BCK-ideal of G_2 . Then $\varphi^{-1}(B)$ is an (4,2)-fuzzy BCK-ideal of G_1 .

Since an (m, n)- fuzzy BCC-ideal / BCK-ideal is an (4,2)- fuzzy sub algebra, as a consequence of the above results and theorem-3.17, we obtain the following corollary.

Corollarly-4.6: Let $\varphi: (G_1, \tau_1) \to (G_2, \tau_2)$ be a homomorphism of the BCC-algebras. Let τ_1 and τ_2 be the (4,2)-fuzzy topologies on G_1 and G_2 respectively such that $\tau_2 = \varphi^{-1}(\tau_1)$. If B is (4,2)-fuzzy topological BCC-ideal / BCK-ideal of G_2 with the membership function δ_B^4 , then $\varphi^{-1}(B)$ is a (4,2)-fuzzy topological BCC-ideal / BCK-ideal of G_1 with the membership function $\delta_{\varphi^{-1}(B)}^m$.

Theorem-4.7: Let φ be a homomorphism of a BCC-algebra G_1 into a BCC-algebra G_2 . If A is an (4,2)-fuzzy BCC-ideal of G_1 , then the homomorphic image $\varphi(A)$ of A is still an (4,2)-fuzzy BCC-ideal of G_2 .

Proof: Let A be an (4,2)-fuzzy topological BCC-ideal of G_1 . Then, it is trivial that $\delta_{\phi(A)}^4(0) \geq \delta_{\phi(A)}^4(x)$ and $\lambda_{\phi(A)}^2(0) \leq \lambda_{\phi(A)}^2(x)$, for all $x \in G_2$.

Take $x, y, z \in G_2$, and let $x_0 \in \phi^{-1}(x), y_0 \in \phi^{-1}(y), z_0 \in \phi^{-1}(z)$ such that

$$\delta_A^4(x_0) = \sup_{t \in \phi^{-1}(x)} t, \ \delta_A^4(y_0) = \sup_{t \in \phi^{-1}(y)} t \ \text{and} \ \delta_A^4(z_0) = \sup_{t \in \phi^{-1}(z)} t.$$

Then we can deduce the following,

$$\begin{split} \delta_{\phi(A)}^{4}(x*z) &= \sup_{t \in \phi^{-1}(x*z)} \left(\delta_{A}^{4}(t) \right) \\ &\geq \delta_{A}^{4}(x_{0}*z_{0}) \\ &\geq \min \left\{ \delta_{A}^{4} \left((x_{0}*y_{0})*z_{0} \right), \delta_{A}^{4}(y_{0}) \right\} \\ &= \min \left\{ \sup_{t \in \phi^{-1} \left((x*y)*z \right)} \left(\delta_{A}^{4}(t) \right), \sup_{t \in \phi^{-1}(y)} \left(\delta_{A}^{4}(t) \right) \right\} \\ &= \min \left\{ \delta_{\phi(A)}^{4} \left((x*y)*z \right), \delta_{\phi(A)}^{4}(y) \right\} \end{split}$$

and
$$\lambda_{\phi(A)}^{2}(x * z) = \inf_{t \in \phi^{-1}(x*z)} \left(\lambda_{\phi(A)}^{2}(t) \right) \le \lambda_{A}^{2}(x_{0} * z_{0})$$

$$\leq \max\{\lambda_A^2((x_0 * y_0) * z_0), \lambda_A^2(y_0)\}$$

$$= \max \left\{ \inf_{t \in \phi^{-1}((x*y)*z)} \left(\lambda_A^2(t) \right), \inf_{t \in \phi^{-1}(y)} \left(\lambda_A^2(t) \right) \right\}$$
$$= \max \left\{ \lambda_{\phi(A)}^2 \left((x*y)*z \right), \lambda_{\phi(A)}^2(y) \right\}$$

Hence $\varphi(A) = \langle \varphi_{sup}(\delta_A), \varphi_{inf}(\lambda_A) \rangle$ is induced an (4,2)-fuzzy BCC-ideal of G_2 .

Putting z = 0 in the above theorem, we obtain:

Corollarly-4.8: Let φ be a homomorphism of a BCC-algebra G_1 into a BCC-algebra G_2 . If If A is an (4,2)-fuzzy BCK-ideal of G_1 , then the homomorphic image $\varphi(A)$ of A is still an (4,2)-fuzzy BCK-ideal of G_2 .

Summing up theorem-3.18, theorem-4.7 and corollary-4.8, we conclude the following theorem.

Theorem-4.9: Let $\varphi: G_1 \to G_2$ be an isomorphism of BCC-algebras. Let τ and τ^* be the respectively(4,2)-fuzzy topologies on the spaces G_1 and G_2 such that $\varphi(\tau) = \tau^*$. If A is an (4,2)-fuzzy topological BCC-ideal / BCK-ideal in G_1 , then $\varphi(A)$ is also an (4,2)-fuzzy topological BCC-ideal / BCK-ideal in G_2 .

Conclusion: we study the concept of (4,2)-fuzzy topological properties of such algebras such as connectedness, strong connectedness and compact Haussdorff space. We also discussed the characteristic of the homomorphic image and inverse image of (4,2)-fuzzy topological BCC-ideals (BCK-ideals) of BCC-algebras (BCK-algebras).

References:

- [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
- [2] S. Bhunia, G. Ghorai and Q. Xin, On the characterization of Pythagorean fuzzy subgroups, AIMS Mathematics 6 (1) (2020) 962 {978. DOI:10.3934/math.2021058.
- [3] A. Bryniarska, The n-Pythagorean fuzzy sets, Symmetry 2020, 12, 1772; doi:10.3390/sym12111772.
- [4] I. Cristea and B. Davvaz, Atanassov ^OC_ Os intuitionistic fuzzy grade of hypergroups, Inform. Sci. 180 (2010) 1506{1517.
- [5] B. Davvaz, W. A. Dudek and Y. B. Jun, Intuitionistic fuzzy Hv-submodules, Inform. Sci. 176 (2006) 285 (300.
- [6] Dudik W.A., 1992, "On proper BCC-algebras", Bull. Inst. Math. Acad. sinica, 20,

PAGE NO: 172

- pp:137-150.
- [7]] Dudik W.A., 1992, "The number of sub algebras and finite BCC-algebras", Bull. Inst. Math. Acad. Sinica, 20, pp:129-136.
- [8] Y. Huang, BCI-algebra, Science Press: Beijing, China 2006.
- [9] H. Z. Ibrahim, T. M. Al-shami and O. G. Elbarbary, (3, 2)-fuzzy sets and their applications to topology and optimal choice, Computational Intelligence and Neuroscience Volume 2021, Article ID 1272266, 14 pages. https://doi.org/10.1155/2021/1272266.
- [10] Imai. Y and Isiki. K, 1966, "On axiom system of propositional calculus XIV, proc.", Japonica Acad, 42, pp:19-22
- [11] Isiki. K and Tanaka. S, 1975, "An introduction to the theory of BCK-algebras", Math. Japonica, 23, pp:126.
- [12] Y. B. Jun and K. H. Kim, Intuitionistic fuzzy ideals in BCK-algebras, Internat. J. Math. Math. Sci. 24 (12) (2000) 839{849.
- [13] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co.: Seoul, Korea 1994.
- [14] M. Olgun, M. Unver and S_. Yardimci, Pythagorean fuzzy topological spaces, Complex & Intelligent Systems 5 (2) (2019) 177{183.
- [15] A. Satirad, R. Chinram and A. Iampan, Pythagorean fuzzy sets in UP-algebras and approximations, AIMS Mathematics 6 (6) (2021) 6002 (6032. DOI:10.3934/math.2021354.
- [16] T. Senapati and R. R. Yager, Fermatean fuzzy sets, Journal of Ambient Intelligence and Humanized Computing 11 (2020) 663 [674.
- [17] I. Silambarasan, Fermatean fuzzy subgroups, J. Int. Math. Virtual Inst. 11 (1) (2021) 1{16. DOI: 10.7251/JIMVI2101001S.
- [18] S. Yamak, O. Kazanci and B. Davvaz, Divisible and pure intuitionistic fuzzy subgroups and their properties, Int. J. Fuzzy Syst. 10 (2008) 298{307.
- [19] R. R. Yager, Pythagorean fuzzy subsets, in Proceedings of the 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), pp. 57{61, IEEE, Edmonton, Canada 2013.
- [20] R. R. Yager, Pythagorean membership grades in multi-criteria decision making, Technical Report MII-3301 Machine Intelligence Institute, Iona College, New Rochelle, NY 2013.
- [21] R. R. Yager and A. M. Abbasov, Pythagorean membership grades, complex numbers and decision-making, International Journal of Intelligent Systems 28 (2013) 436 (452.
- [22] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338 (353.

PAGE NO: 173