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1.Introduction: In classical set theory, the membership of elements in a set is assessed in binary 

terms according to a bivalent condition: an element either belongs or does not belong to the 

set. As an extension, fuzzy set theory (See [22]) permits the gradual assessment of the 

membership of elements in a set; this is described with the aid of a membership function valued 

in the real unit interval [0; 1]. As a generalization of fuzzy set, Atanassov [1] created 

intuitionistic fuzzy set. Intuitionistic fuzzy set is widely used in all _elds (See [4, 5, 12, 18] for 

applications in algebraic structures). In 2013, Yager [19, 20, 21] introduced Pythagorean fuzzy 

set and compared it with intuitionistic fuzzy set. Pythagorean fuzzy set is a new extension of 

intuitionistic fuzzy set that conducts to simulate the vagueness originated by the real case that 

might arise in the sum of membership and non-membership is bigger than 1. Pythagorean fuzzy 

set is applied to groups (See [2]), UP-algebras (See [15]) and topological spaces (See [14]). 

Senapati et al. [16] introduced Fermatean fuzzy set which is another extension of intuitionistic 

fuzzy sets and it is applied to groups (See [17]). Ibrahim et al. [9] introduced (3; 2)-fuzzy sets 

and applied it to topological spaces. In this paper, we study the concept of (4,2)-fuzzy 

topological properties of such algebras such as connectedness, strong connectedness and 

compact Haussdorff space. We also obtain the characteristic of the homomorphic image and 
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inverse image of (4,2)-fuzzy topological BCC-ideals (BCK-ideals) of BCC-algebras (BCK-

algebras). 

2. Preliminaries and Various Basic Concept of BCC-algebras(BCK-algebras) 

 In this section, we first review some definitions and properties which will be used in 

the sequel.  

A non-empty set G with a constant 0 and binary operation ∗ is called a 

BCC-algebra if it satisfies the following conditions: 

a) ��(x ∗ y) ∗ (z ∗ y)� ∗ (x ∗ y) = 0� 

b) x ∗ x = 0 

c) 0 ∗ x = 0 

d) x ∗ 0 = 0 

e) x ∗ y = 0 , y ∗ x = 0 ⇒ x = y 

for all x, y, z ∈ G. In BCC-algebra, the following equality holds (x ∗ y) ∗ x = 0. 

 Obviously, any BCK-algebra is BCC-algebra but there exist BCC-algebras which are 

not necessarily BCK-algebra. We note that a BCC-algebra is BCK-algebra if and if only, it 

satisfies the equality (x ∗ y) ∗ z = (x ∗ z) ∗ y. 

A non-empty subset ‘S’ of a BCK-algebra ‘G’ is called a sub algebra of G if it is closed 

under the BCC-operation. Such algebra contains the constant 0 and it is clearly a BCC-algebra, 

but some sub algebras may be also BCK-algebras. Moreover, there exit BCC-algebras which 

all sub algebras are BCK-algebras. 

A mapping φ: G� → G� of BCC-algebras is called a homomorphism if 

φ(x ∗ y) = φ(x) ∗ φ(y) holds, for all x, y ∈ G�. 

 For a non-empty given set G, let I be the closed unit interval [0, 1]. Then, an (4,2)-fuzzy 

set is an object of the form A = �〈x, δ�
�(x), λ�

�(x)〉/ x ∈ G�, when the mappings 

δ�
�: G → I and λ�

�: G → I denote the degree of membership (namely, δ�(x)) and the degree of 

non-membership (namely, λ�(x)) of each element x ∈ G to the object ‘A’ respectively 

satisfying 0 ≤ δ�
�(x) + λ�

�(x) ≤ 1 for all x ∈ G. 

 The complement of the (4,2)-fuzzy set is A� = �〈x, λ�
�(x), δ�

�(x)〉/ x ∈ G�. 

Obviously, every fuzzy A on a non-empty G is an (4, 2)-fuzzy set of the form 

A = �〈x, δ�
�(x), 1 − λ�

�(x)〉/ x ∈ G�. For the sake of simplicity, we just write 

 A = 〈δ�
�, λ�

�〉 instead of A = {〈x, δ�(x), λ�(x)〉/ x ∈ G}. 

 The (4,2)-fuzzy sets 0~ and 1~ in G are defined by 
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0~ = {〈x, 0, 1〉: x ∈ G} and 1~ = {〈x, 1, 0〉: x ∈ G}, respectively. 

 If � is a mapping which maps a set G� into another set G�, then the following statement 

hold: 

(a) If B = �〈y, δ�
�(y), λ�

�(y)〉/ y ∈ G�� is an (4,2)-fuzzy set in G�, then the pre image of 

B under φ, denoted by φ��(B), is still an (4,2)-fuzzy set in G�, we now write 

φ��(B) = {〈x,  φ��(δ�)(x),  φ��(λ�)(x)〉/ x ∈ G�}. 

(b) If A = �〈x, δ�
�(x), λ�

�(x)〉/ x ∈ G�� in an (4,2)-fuzzy set in G�, then the image of A 

under φ, denoted by φ(A), is also an (4,2)-fuzzy set in G�, which is defined by 

φ(A) = �〈y, φ���(δ�)(y), φ���(λ�)(y) 〉: y ∈ G��, where 

φ���(δ�)(y) = �
sup

�∈ ���(�)
δ�(x) , if  φ��(y) ≠ 0,

0, else where,
 

φ���(λ�)(y) = �
inf

�∈ ���(�)
λ�(x) , if  φ��(y) ≠ 0,

0, else where,
 

for each y ∈ G�. 

Proposition-2.1: Let A, A�(i ∈ I)be (4,2)-fuzzy set in G� and B an (4,2)-fuzzy set in G�. 

If φ: G� → G� is a function, then the following properties hold for the function φ: 

(a) If φ is surjective,  then φ�φ��(B)� = B. 

(b) φ��(⋃ A�
�
��� ) = ⋃ φ��(A�)

�
��� . 

(c) φ��(1~) = 1~. 

(d) φ��(0~) = 0~. 

(e) φ(1~) = 1~, if φ is surjective 

(f) φ(0~) = 0~. 

Definition-2.2: An (4,2)-fuzzy topology on a non-empty set G is a family � of (4,2)-fuzzy sets 

in G which satisfies the following conditions: 

(i) 0~, 1~ ∈ �. 

(ii) If G�, G� ∈ �, then G� ∩ G�. 

(iii) If G� ∈ � for all j ∈ J, then ⋃ G��∈� ∈ �. 

The pair (G, �) is called an (4,2)-fuzzy topological space and any (4,2)-fuzzy set in � is called 

an (4,2)-fuzzy open sets in G. The topology � on a (4,2)-fuzzy topological space is said to be 

an indiscrete (4,2)-fuzzy topology if it’s only element are 0~ and 1~. On the other hand, (4,2)-

fuzzy topology � on a space G is said to be discrete (4,2)-fuzzy topology 

if the topology (4,2)-fuzzy topology � contains all (4, 2)-fuzzy subsets of G. 
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 If A is an (4,2)-fuzzy set in an (4,2)-fuzzy topological space (G, �), then the induced  

(4,2)-fuzzy topological space on A is the family of (4,2)-fuzzy sets in A which are the 

intersection with A of (4,2)-fuzzy sets in G. The induced (4,2)-fuzzy topology is denoted by ��, 

and the pair (A, ��) is called  an fuzzy subspace of (G, �). 

 Let (G�, ��) and (G�, ��) be two (4,2)-fuzzy topological spaces and  

φ: (G�, ��) → (G�, ��) a function. Then φ is said to be (4,2)-fuzzy continuous function if and 

only if the pre image of each (4,2)-fuzzy set in �� is an (4,2)-fuzzy set in ��. Let 

(G�, ��) and (G�, ��) be two (4,2)-fuzzy topological spaces and φ: (G�, ��) → (G�, ��) a 

function. Then φ is said to be (4,2)-fuzzy open if and only if the image of each (4,2)-fuzzy set 

in �� is an (4,2)-fuzzy set in ��. 

 

3. (4,2)-fuzzy topological sub algebras 

Definition-3.1: An (4,2)-fuzzy set A = 〈δ�
�, λ�

�〉 in G is called (4,2)-fuzzy sub algebra of G 

if it satisfies the following conditions; 

FS1 : δ�
�(x ∗ y) ≥ min�δ�

�(x), δ�
�(y)� 

FS2 : λ�
�(x ∗ y) ≤ max�λ�

�(x), λ�
�(y)�, for all x, y ∈ G. 

 

Example-3.2: Let G = {0, 1, 2, 3, 4} be a BCC-algebra with the following Cayley table. 

+ 0 1 2 3 4 

0 0 0 0 0 0 

1 1 0 1 0 0 

2 2 2 0 0 0 

3 3 3 1 0 0 

4 4 3 4 3 0 

Let A = 〈δ�
�, λ�

�〉 be an (4,2)-fuzzy set in G defined by δ�
�(4) = 0.07, δ�

�(x) = 0.6, 

λ�
�(x) = 0.5 and λ�

�(4) = 0.06 for all x ≠ d. Then A is (4,2)-fuzzy sub algebra of G. 

Definition-3.3: Let �� and �� be an (4,2)-fuzzy topologies on BCC-algebras G� and G� 

respectively. A function φ: (G�, ��) → (G�, ��) is called an (4,2)-fuzzy continuous function 

which maps (G�, ��) and (G�, ��) if φ satisfies the following conditions: 

(i) For every A ∈ ��, φ��(A) ∈ τ�. 

(ii) For every (4,2)-fuzzy sub algebra A ( of G�) in ��, φ��(A) is (4,2)-fuzzy sub algebra 

 ( of G�) in ��. 
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Proposition-3.4: If in �� is an (4,2)-fuzzy topology on a BCC-algebra G� and �� is an 

(4,2)-fuzzy topology on a BCC-algebra G�, then every function φ: (G�, ��) → (G�, ��) is  

a (4,2)-fuzzy continuous function. 

Proof: Since �� is an indiscrete (4,2)-fuzzy topology, �� = (0~, 1~).. 

Let φ: G� → G� be any mapping of BCC-algebras. Then, every member of �� is an 

(4,2)-fuzzy topology on a BCC-algebra G�. 

We now show that φ is (4,2)-fuzzy continuous function. We only need to prove that for 

every A ∈ ��, φ��(A)  ∈ ��. 

For this purpose, we let 0~ ∈ ��. Then for any x ∈ G�, we have  

φ��(0~)(x) = 0~(φ(x)) = 0 = 0~(x). This show that �φ��(0~)� = 0~ ∈ ��. 

 On the other hand, if 1~ ∈ �� and � ∈ G�, then 

 φ��(1~)(x) = 1~(φ(x)) = 1 = 1~(x). Thus �φ��(1~)� = 1~ ∈ ��. 

 This show that φ is indeed an (4,2)-fuzzy continuous function of G� to G�. 

Theorem-3.5: Let �� and ��be any two discrete (4,2)-fuzzy topologies defined on the BCC-

algebras G� and G� respectively. Then every homomorphism φ: (G�, ��) → (G�, ��) is an (4,2)- 

fuzzy continuous function. 

Proof: Since �� and �� are discrete (4,2)-fuzzy topologies on the BCC-algebras G� and G� 

respectively, we have φ��(A)  ∈ �� for every A ∈ ��. 

 We note that φ is not the usual inverse homomorphism from G� to G�. 

 Let A = 〈δ�
�, λ�

�〉 be an(4,2)-fuzzy sub algebra (of G�) in ��. Then for x, y ∈ G�, we 

have,�φ���δ�
��� (x ∗ y) = δ�

��φ(x ∗ y)� 

             = δ�
��φ(x) ∗ φ(y)� 

             ≥ min�δ�
��φ(x)�, δ�

��φ(y)�� 

             =  min ��φ���δ�
��� (x), �φ��(4)� (y)� and  

�φ���λ�
��� (x ∗ y) = λ�

��φ(x ∗ y)� 

          = λ�
��φ(x) ∗ φ(y)� 

          ≤ max�λ�
��φ(x)�, λ�

��φ(y)�� 

                      =  max ��φ���λ�
��� (x), �φ���λ�

��� (y)� 

Hence φ��(A) is an (4,2)-fuzzy sub algebra (of G�) in �� and consequently,  φ is an   

(4,2)-fuzzy continuous function which maps (G�, ��) to (G�, ��). 

Definition-3.6: Let (G�, ��) and (G�, ��) be (4,2)-fuzzy topology sub algebras. A function 
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 φ: (G�, ��) → (G�, ��) is said to be an (4,2)-fuzzy homomorphism if it satisfies the following 

conditions: 

 φ is an injective and surjective function. 

 φ is fuzzy continues function which maps  G� to G�. 

 φ�� is fuzzy continues function which maps  G� to G�. 

 

Definition-3.7: Let � be an (4,2)-fuzzy topology of BCC-algebra G. An (4,2)-fuzzy topology 

(G, �) is an (4,2)- fuzzy Hausdorff space if and only if for any discrete  (4,2)-fuzzy point 

x�, x� ∈ G, there exits (m, n)- fuzzy topology F� = 〈δ��

� , λ��

� 〉 and F� = 〈δ��

� , λ��

� 〉 such that 

δ��

� (x�) = 1 , λ��

� (x�) = 0, δ��

� (x�) = 1 , λ��

� (x�) = 0 and F� ∩ F� = 0~. 

Theorem-3.8: Let �� and �� be (4,2)-fuzzy topologies on the BCC-algebras G� and G� 

respectively and let φ: (G�, ��) → (G�, ��) be an (4,2)-fuzzy homomorphism. Then  G� is  

an (4,2)-fuzzy Hausdorff space if and only if G� is an (4,2)-fuzzy Hausdorff space. 

Proof: Suppose that G� is a (4,2)-fuzzy Hausdorff space. 

Let x�, x� be the (4,2)-fuzzy point in �� with x ≠ y where x, y ∈ G�.  

Then φ��(x) ≠ φ��(y) because φ is injective function. 

For z ∈ G�, �φ��(x�)�(z) = x� �φ(z)� 

          = �
s ∈ [0, 1], if φ(z) = x

0, if φ(z) ≠ x
  = �

s ∈ [0, 1], if z = φ��(x)

0, if z ≠ φ��(x)
 

         = �φ��(x)�
�

(z). 

That is, �φ��(x�)�(z) = �φ��(x)�
�

(z) for all z ∈ G. Hence φ��(x�)=�φ��(x)�
�
. 

Similarly we can also prove that φ��(x�)=�φ��(x)�
�
. Now by the definition of an  

(4,2)-fuzzy Hausdorff space, there exist (4,2)-fuzzy order F� and F� of φ��(x�) and φ��(x�) 

respectively such that F� ∩ F� = 0~. Since φ is an (4,2)-fuzzy continuous map from G� to G�, 

there exist  (4,2)-fuzzy orders φ(F�) and φ(F�) of x� and x� respectively such that φ(F�) ∩

φ(F�) = φ(F� ∩ F�) = φ(0~) = 0~. This implies that G�  is a (4,2)-fuzzy Hausdorff space. 

 Conversely, if (G�, ��) is a (4,2)-fuzzy Hausdorff space, then by using a similar 

argument as above and by the fact that both φ and  φ�� are (4,2)-fuzzy continuous functions, 

we can easily prove that (G�, ��) is an (4,2)-fuzzy Hausdorff space. Hence the proof. 

Definition-3.9: Let � be an (m, n)- fuzzy topology on a BCC-algebra G. Then (G, �) is called 

an (4,2)-fuzzy C�-disconnected space if there exists an (4,2)-fuzzy open and closed set F 

such that F ≠ 0~ and F ≠ 1~. 

FOUNDRY JOURNAL[ISSN:1001-4977] VOLUME 27 ISSUE 10

PAGE NO : 167



Theorem-3.10: Let �� and �� be the (4,2)-fuzzy topology sub algebras G� and G� respectively 

and let φ: G� → G� be an (4,2)-fuzzy continuous surjective function. If  (G�, ��) is an (4,2)-

fuzzy C�-connected space then (G�, ��) is also an (4,2)-fuzzy C�-connected space. 

Proof: Assume that (G�, ��) is a (4,2)- fuzzy C�-disconnected. Then there exist an (4,2)-fuzzy 

open and closed set F such that F ≠ 0~ and F ≠ 1~. 

Since φ is an (m, n)- fuzzy continuous function φ��(F) is both (4,2)-fuzzy open and  

(4,2)-fuzzy closed set. In this case φ��(F) ≠ 0~ or φ��(F) ≠ 1~. 

Since, F =  φ�φ��(F)� = φ(0~) = 0~ and F =  φ�φ��(F)� = φ(1~) = 1~. 

We see that these results contradict to our assumption.  

Hence the space (G�, ��) must be (4,2)-fuzzy C�-connected space. 

Definition-3.11: Let � be an (4,2)-fuzzy topology on a BCC-algebra G. An (4,2)-fuzzy 

topology (G, �) is called an (4,2)-fuzzy disconnected space if there exist (4,2)- fuzzy open sets 

A ≠ 0~ and B ≠ 0~ such that A ∪ B = 0~. Naturally, we call the set (G, �) an (m, n)- fuzzy 

connected if (G, �) is not (4,2)-fuzzy disconnected. 

Theorem-3.12: Let �� and �� be (m, n)- fuzzy topology set on BCC-algebras G� and G� 

respectively and let φ: (G�, ��) → (G�, ��) be an (4,2)-fuzzy continuous and surjective 

function. If G� is an (4,2)-fuzzy connected space, then so is G�. 

Proof: Suppose that G� is an (m, n)- fuzzy disconnected, then there exists (4,2)-fuzzy open sets 

C ≠ 0~ and D ≠ 0~ in G� such that C ∪ D = 1~ and C ∩ D = 0~. 

 Since φ is (4,2)-fuzzy continuous function, A = φ��(C) and B = φ��(D) are 

(m, n)- fuzzy open sets in G�. 

 Clearly, C ≠ 0~ implies that A = φ��(C) ≠ 0~ , and D ≠ 0~ implies that 

 B = φ��(D) ≠ 0~ . 

 Now C ∪ D = 1~. 

⇒ φ��(C ∪ D) = φ��(1~). 

⇒ φ��(C) ∪ φ��(D) = 1~ implies A ∪ B = 1~ and  

C ∩ D = 0~ ⇒ φ��(C ∩ D) = φ��(0~) 

⇒ φ��(C) ∩ φ��(D) = 0~ implies A ∩ B = 0~ . 

This clearly contradicts our hypothesis. 

Hence G� is an (4,2)-fuzzy connected space. 

Definition-3.13: An (m, n)- fuzzy topology space (G, �) is said to be an (4,2)-fuzzy strongly 

connected, if there exists no non-zero (4,2)-fuzzy closed sets A and B in G 

such that δ�
� + δ�

� ≤ 1 and λ�
� + λ�

� ≥ 1. 
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The following fact follows immediately from the definition. 

 

Propositon-3.14: G is (4,2)-fuzzy strongly connected if and only if there exist an (4,2)-fuzzy 

open sets A and B in G such that A ≠ 1~ ≠ B and δ�
� + δ�

� ≥ 1 , λ�
� + λ�

� ≤ 1. 

We now formulate the following theorem. 

Theorem-3.15: Let �� and �� be (4,2)-fuzzy topology set on BCC-algebras G� and G� 

respectively and let φ: (G�, ��) → (G�, ��) be an (4,2)- fuzzy continuous and surjective 

mapping. If G� is an (4,2)-fuzzy strongly connected, then so is G�. 

Proof: Suppose that G� is not an (4,2)-fuzzy strongly connected. Then there exists (4,2)-fuzzy 

open sets C ≠ 0~ and D ≠ 0~  so that  δ�
� + δ�

� ≤ 1 and λ�
� + λ�

� ≥ 1. Since φ is  

an (4,2)-fuzzy continuous function, φ��(C) and φ��(D) are (4,2)-fuzzy closed sets 

in G�. Now we can deduce the following equalities; 

δ���(�)
� + δ���(�)

� = φ��(δ�
�) + φ��(δ�

� ) 

        =  δ�
� ᴏ φ+δ�

�  ᴏ φ ≤ 1 (Since δ�
� + δ�

� ≤ 1), 

λ���(�)
� + λ���(�)

� = φ��(λ�
�) + φ��(λ�

� ) 

        =  λ�
� ᴏ φ+λ�

�  ᴏ φ ≥ 1 (Since λ�
� + λ�

� ≥ 1). 

φ��(C) ≠ 0~ and φ��(D) ≠ 0~. This contradicts our hypothesis. Hence G� is an (4,2)-fuzzy 

strongly connected space. 

Definition-3.16: Let � be an (4,2)-fuzzy topology on a BCC-algebra G and A be an (4,2)-fuzzy 

BCC-algebra with (4,2)-fuzzy topology ��. Then A is called an (4,2)-fuzzy topological BCC-

sub algebra if the self-mapping γ�:  (A, ��) → (A, ��) defined by 

γ�(x) = x ∗ a for all a ∈ G, is a Relatively  (4,2)-fuzzy continuous function. 

Theorem-3.17: Let φ: G� → G� be a homomorphism of BCC-algebras and � and �∗ be  

(4,2)-fuzzy topologies on G� and G� respectively such that � = φ��(�∗). If B is an  

(4,2)-fuzzy topological BCC-sub algebra in G�, then φ��(B) is an (4,2)-fuzzy topological 

BCC-sub algebra in G�. 

Theorem-3.18: Let φ: G� → G� be an isomorphism of BCC-algebras. Let � and �∗ be the 

respectively (4,2)-fuzzy topologies on the spaces G� and G� such that � = φ��(�∗). If A is an 

(4,2)-fuzzy topological BCC-sub algebra in G�, then φ��(A) is an (4,2)-fuzzy topological 

BCC-sub algebra in G�. 

 

4. (4,2)-fuzzy topological BCC-ideals 
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Definition-4.1: An (4,2)-fuzzy set A = {〈δ�, λ�〉} in a BCK-algebra G is called an (4,2)-fuzzy 

BCK-ideal of G if the following conditions are satisfied; 

(i) δ�
� (0) ≥ δ�

� (x) and λ�
� (0) ≤ λ�

� (x), 

(ii) δ�
� (x) ≥ min{δ�

� (x ∗ y), δ�
� (y)} 

(iii) λ�
� (x) ≤ max{λ�

� (x ∗ y), λ�
� (y)} for all x, y ∈ G. 

Definition-4.2: An (4,2)-fuzzy set A = 〈δ�, λ�〉 in G is called an (4,2)-fuzzy BCC-ideal of G if 

it satisfies the following conditions; 

(4,2) F�: δ�
� (0) ≥ δ�

� (x) and λ�
� (0) ≤ λ�

� (x) 

(4,2) F�: δ�
� (x ∗ z) ≥ min�δ�

� �(x ∗ y) ∗ z�, δ�
� (y)� 

(4,2) F�: λ�
� (x ∗ z) ≤ max�λ�

� �(x ∗ y) ∗ z�, λ�
� (y)� for all x, y, z ∈ G. 

 Putting z = 0 in (m, n) F� and (4,2) F�, then we can easily see that an (4,2)-fuzzy BCC-

ideal is an (m, n)- fuzzy BCK-ideal. However, the converse does not hold. 

 Example-4.3: Let G = {0, 1, 2, 3, 4, 5} be a BCC-algebra with the following Cayley table; 

+ 0 1 2 3 4 5 
0 0 0 0 0 0 0 
1 1 0 0 0 0 1 
2 2 2 0 0 1 1 
3 3 2 1 0 1 1 
4 4 4 4 4 0 1 
5 5 5 5 5 5 0 

 Let A = 〈δ�, λ�〉 be an (4,2)-fuzzy set in G defined by δ�
� (5) = 0.02, δ�

� (x) = 0.4,  

λ�
� (5) = 0.2 and λ�

� (x) = 0.04 for all x ≠ 5, then A is an (4,2)-fuzzy BCC-ideal of a BCC-

algebra G. 

Theorem-4.4: Let φ be a homomorphism of a BCC-algebra G� into a BCC-algebra G� and B 

be an (4,2)- fuzzy BCC-ideal of G�. Then φ��(B) is an (4,2)-fuzzy BCC-ideal of G�. 

Proof: It can be easily seen that  

δ���(�)
� (0) ≥ δ���(�)

� (x) and λ���(�)
� (0) ≤ λ���(�)

� (x) , for all x ∈ G�. 

For any x, y, z ∈ G�, we can deduce the following 

δ���(�)
� (x ∗ z) = δ�

� ��(x ∗ z)� 

  ≥ min �δ�
� ���(x ∗ y) ∗ z�� , δ�

� ��(y)�� 

  = min �δ�
� ���(x) ∗ �(y)� ∗ �(z)� , δ�

� ��(y)�� 

  = min �δ���(�)
� �(x ∗ y) ∗ z�, δ���(�)

� (y)�. 

Also  
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λ���(�)
� (x ∗ z) = λ�

� ��(x ∗ z)� 

  ≤ max �λ�
� ���(x ∗ y) ∗ z�� , λ�

� ��(y)�� 

  = max �λ�
� ���(x) ∗ �(y)� ∗ �(z)� , λ�

� ��(y)�� 

  = max �λ���(�)
� �(x ∗ y) ∗ z�, λ���(�)

� (y)�  

Hence φ��(B) is an (4,2)-fuzzy BCC-ideal of G�. 

Corollarly-4.5: Let φ be a homomorphism of a BCC-algebra G� into a BCC-algebra G� and B 

be an (4,2)-fuzzy BCK-ideal of G�. Then φ��(B) is an (4,2)-fuzzy BCK-ideal of G�. 

 Since an (m, n)- fuzzy BCC-ideal / BCK-ideal is an (4,2)- fuzzy sub algebra, as a 

consequence of the above results and theorem-3.17, we obtain the following corollary. 

Corollarly-4.6: Let φ: (G�, ��) → (G�, ��) be a homomorphism of the BCC-algebras. Let �� 

and �� be the (4,2)-fuzzy topologies on G� and G� respectively such that �� = φ��(��). If B 

is (4,2)-fuzzy topological BCC-ideal / BCK-ideal of G� with the membership function δ�
� , then 

φ��(B) is a (4,2)-fuzzy topological BCC-ideal / BCK-ideal of G� with the membership 

function δ���(�)
� . 

Theorem-4.7: Let φ be a homomorphism of a BCC-algebra G� into a BCC-algebra G�. If A is 

an (4,2)-fuzzy BCC-ideal of G�, then the homomorphic image φ(A) of A is still an (4,2)-fuzzy 

BCC-ideal of G�. 

Proof: Let A be an (4,2)-fuzzy topological BCC-ideal of G�. Then, it is trivial that  

δ�(�)
� (0) ≥ δ�(�)

� (x) and λ�(�)
� (0) ≤ λ�(�)

� (x) , for all x ∈ G�. 

Take x, y, z ∈ G�, and let x� ∈ φ��(x), y� ∈ φ��(y), z� ∈ φ��(z) such that 

δ�
� (x�) = sup

�∈ ���(�)
t,  δ�

� (y�) = sup
�∈ ���(�)

t and δ�
� (z�) = sup

�∈ ���(�)
t. 

Then we can deduce the following, 

δ�(�)
� (x ∗ z) = sup

�∈ ���(�∗�)
�δ�

� (t)� 

    ≥ δ�
� (x� ∗ z�) 

                   ≥ min�δ�
� �(x� ∗ y�) ∗ z��, δ�

� (y�)�                  

= min � sup
�∈ ����(�∗�)∗��

�δ�
� (t)�, sup

�∈ ���(�)
�δ�

� (t)�� 

                                    = min�δ�(�)
� �(x ∗ y) ∗ z�, δ�(�)

� (y)� 

 

and     λ�(�)
� (x ∗ z) = inf

�∈ ���(�∗�)
�λ�(�)

� (t)�  ≤ λ�
� (x� ∗ z�) 

FOUNDRY JOURNAL[ISSN:1001-4977] VOLUME 27 ISSUE 10

PAGE NO : 171



                   ≤ max�λ�
� �(x� ∗ y�) ∗ z��, λ�

� (y�)� 

                  

= max � inf
�∈ ����(�∗�)∗��

�λ�
� (t)� , inf

�∈ ���(�)
�λ�

� (t)�� 

                                     = max�λ�(�)
� �(x ∗ y) ∗ z�, λ�(�)

� (y)� 

Hence φ(A) = 〈φ���(δ�), φ���(λ�)〉 is induced an (4,2)-fuzzy BCC-ideal of G�. 

Putting z = 0 in the above theorem, we obtain: 

Corollarly-4.8: Let φ be a homomorphism of a BCC-algebra G� into a BCC-algebra G�. If  

If A is an (4,2)-fuzzy BCK-ideal of G�, then the homomorphic image φ(A) of A is still an (4,2)-

fuzzy BCK-ideal of G�. 

 Summing up theorem-3.18, theorem-4.7 and corollary-4.8, we conclude the following 

theorem. 

Theorem-4.9: Let φ: G� → G� be an isomorphism of BCC-algebras. Let � and �∗ be the 

respectively(4,2)-fuzzy topologies on the spaces G� and G� such that φ(�) = �∗. If A is an 

(4,2)-fuzzy topological BCC-ideal / BCK-ideal in G�, then φ(A) is also an (4,2)-fuzzy 

topological BCC-ideal / BCK-ideal in G�. 

Conclusion:  we study the concept of (4,2)-fuzzy topological properties of such algebras such 

as connectedness, strong connectedness and compact Haussdorff space. We also discussed the 

characteristic of the homomorphic image and inverse image of (4,2)-fuzzy topological BCC-

ideals (BCK-ideals) of BCC-algebras (BCK-algebras). 
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