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ABSTRACT 

 
The objective of this study is to apply Artificial Neural Networks (ANNs) in 
straightforward mathematical pendulum experiments for gravity determination. The 
simple pendulum is a classic physics experiment that involves a mass attached to a string 
and it exhibits simple harmonic motion. The acceleration due to gravity is a fundamental 
constant in physics, and has various scientific and engineering applications. By collecting 
experimental data including the pendulum's parameters such as length, angle, and time 
period, we construct a dataset for training and testing ANNs. Four datasets were initially 
collected and subsequently interpolated to generate additional data. These augmented 
datasets were used for training each model. Training is done with the help of Neural 
Network tool available in MATLAB. Each model underwent testing to derive gravity 
values, which were then compared to reference gravity values. The Neural Network 
model exhibited excellent accuracy. The same modelling can be applied on any physical 
pendulum in which oscillation is generally performed by any material body suspended on 
a horizontal axis and allowed to rotate about the axis.  
 
Keywords: Artificial Neural Network, Simple Pendulum, Gravity, Backpropagation 

I. INTRODUCTION 

 
The measurement of gravity is a fundamental aspect of physics and plays a pivotal role in 
understanding the behaviour of objects under its influence. One of the classic experiments 
used to determine the value of gravity is the simple mathematical pendulum experiment 
[1]. In this experiment, a mass is suspended from a fixed point, forming a pendulum, and 
allowed to oscillate freely under the influence of gravity [2]. By measuring the period of 
oscillation of the pendulum, we can derive the value of gravitational acceleration (g) with 
high precision [3] [4]. 
 
Traditionally, this experiment has been conducted using classical physics formulas and 
precise measurement devices. However, in recent years, there has been a growing interest 
in utilizing artificial intelligence techniques, particularly ANNs, to enhance the accuracy 
and efficiency of such experiments [5]. A Neural Network is a computational system 
designed to replicate the functioning of the human brain using simplified neuron models 
and their interconnections [6]. These networks are mathematically modelled to simulate 
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human-like intelligence and find applications in various technologies [7]. Neural 
Networks adapt their free parameters through environmental stimuli, a process known as 
learning, and the type of learning is determined by how these parameters change [8]. 
Neural Networks consist of numerous processing elements interconnected to create a 
network with adjustable weighting functions for each input. Typically organized into 
three or more layers, they include input layers for data presentation, output layers for 
response generation, and one or more intermediate or "hidden layers." ANNs have 
demonstrated their ability to solve complex problems and make accurate predictions in 
various fields, including physics. Neural Networks offer several advantages: firstly, they 
excel in constructing high-level nonlinear function estimation models, and secondly, they 
do not impose limitations on the number of features [9]. In this work, we investigate the 
use of artificial neural networks to estimate the value of gravity in the simple pendulum 
experiment. A neural network can be created using MATLAB’s neural network toolbox. 
 A model for predicting the gravitational acceleration with high accuracy can be created 
by training a neural network on a dataset of pendulum oscillation times and 
accompanying gravitational accelerations. This method has a number of benefits, such as 
the possibility to cut down on experimental errors and the capacity to take into 
consideration a number of variables that might have an impact on the behaviour of the 
pendulum. The subsequent sections of this research will delve into the methodology, data 
collection, and analysis, as well as the results obtained from the ANN-based approach. 
We will also compare the accuracy and reliability of our neural network model with 
traditional methods of gravity measurement, demonstrating the potential of artificial 
intelligence in revolutionizing experimental physics [10]. 
 
Research method: The mathematical pendulum experiments involve the collection of 
period data from pendulum swings, measuring the time for a single swing. Utilizing the 
known string length, the gravitational (g) value is computed using a specific equation. To 
enhance the dataset, experimental data is interpolated using Newton's interpolation 
method, generating additional data points not originally obtained. This expanded dataset 
serves as valuable training data. The combined dataset, comprising both interpolated and 
experimental data, is employed to train Linear Regression  models and machine learning 
algorithms. These models are utilized to predict gravity values beyond the scope of the 
experimental results. The performance of each model is assessed by analysing error 
values, standard deviations, and percentage accuracy in comparison to reference values 
[11].  
 
The proposed work involves four main phases: 
 

 Data Collection: Experimental data is gathered by varying the length and initial 
angle of the pendulum and measuring the resulting time periods of oscillation. 
These data points are carefully recorded and used to create a comprehensive 
dataset. 

 Model Development: Artificial neural networks are designed and trained using the 
collected data. The ANN is trained to learn the complex relationship between the 
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pendulum parameters and the acceleration due to gravity. Different ANN 
architectures and hyper parameters are explored to find the best-performing model 
for predicting the time period of the pendulum under various conditions using the 
software MATLAB. 

 Evaluation and Prediction: The trained ANN model is subsequently used to 
predict the value of g based on new data from pendulum experiments. The 
accuracy of the model is assessed through comparisons with known gravitational 
acceleration values and conventional calculation methods. 

 Validation: Assessing the accuracy and reliability of the ANN's predictions by 
comparing them with experimental data. 

The outcomes of this project provide a practical example of utilizing ANNs for predicting 
physical phenomena, showcasing their versatility beyond traditional data analysis 
applications. The results contribute to a deeper understanding of the simple pendulum 
system and the potential of artificial neural networks in solving complex prediction 
problems in physics and engineering.   

 

II. LITERATURE REVIEW 

 
A simple mathematical pendulum can be described as a mechanical system exhibiting 
simple Harmonic motion. A point mass hanging from a rigid support by an inextensible 
string makes up the ideal simple pendulum. In actual use, a round metallic bob of a 
specific mass is suspended using a cotton thread and mounted to a retort stand [12]. 
Galileo Galilei was the first scientist to study about the properties of Simple Pendulum. 
His study started from 1602.He found out that time period of the pendulum is 
independent of the amplitude of oscillations, mass of the bob etc. and depends only on the 
length of the pendulum and acceleration due to gravity. The motion of simple pendulum 
follows predictable patterns, making it a valuable tool for studying concepts like periodic 
motion, gravity and harmonic motion. Its behaviour can be described mathematically 
using equations that relate its period, length and gravity acceleration [13]. Simple 
pendulum has a variety of daily life applications the most important being the use of the 
pendulum in the measurement of time. Since the time period of the pendulum remains 
constant it is employed in clocks in ancient times. Pendulums are also used in 
seismometers to measure the magnitude of earthquakes and have many other 
applications. In the laboratory we are focused mainly in measuring the acceleration due to 
gravity [14]. 

 
III. MATHEMATICAL MODELLING OF SIMPLE PENDULUM 

 
Consider a simple pendulum executing simple harmonic motion. Let ‘ l’ be the 

pendulum’s length,  ‘m’ be the bob’s mass and  represents the angle the string makes 
with the equilibrium position when it oscillates. 

The weight of the bob towards the downward direction and the tension T along 
the string in the upward direction are the two forces acting on the bob. Weight mg can be 
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divided into two perpendicular halves                      which are both 
perpendicular to the string. 

 
 

 

 

 

       θ 

 

 

 

 
 
 
 
 
 
 
 

 
is balanced by tension T.     

 
                    (1)          

 is balanced by restoring force 
       

                                                                                                                                                          (2)  
Since pendulum is oscillated for small angle,  
 
 
Thus, Equation 2 becomes,  
                                                                                 (3) 
 
Applying Newton’s Third law and the concept of simple harmonic motion,      
 
The, time period of the simple pendulum is obtained as 
                                                                              
                                                                                                   (4) 
Squaring and rearranging we get the acceleration due to gravity, 
                                                                         
                                                    (5) 

 
 
 

Figure 1: Simple pendulum executing simple harmonic motion 
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IV. ARTIFICIAL NEURAL NETWORKS 
 

ANNs are stimulated by the functionality and edifice of the human brain. It seems like a 
network consisting of a large number of interconnected components called neurons The 
processing elements or the artificial neurons are the basic functional units of ANN. The 
ANN is designed by programming computers to behave like brain cells so that computer 
will have an ability to understand things and make decisions in a human like manner [15] 
[16]. 
  
Three different layers of neurons are used for processing. The layers are the input layer, 
hidden layer, and output layer. The layers are interconnected to each other by weights. 
Each artificial neuron takes an input from the input sources, applied an activation 
function to this input, and generates the net result. [17] [18]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 .Structure of BPNN 

 
The Backpropagation Neural Network (BPNN) method is used for ANN training. It is a 
multilayer feed-forward neural network. The important steps for the training of a NN are 
as follows; 

 Input vectors are feed forwarded 

 The computer error is then backpropagated 

 Updates the weight function to minimize the error. 
This BPNN algorithm targets the reduction of root mean square error of the response.  
The delta rule is used for weight updation.The NN training performance depends on the 
initial weights, learning rate, update interval, and the hidden layers. 

 
Figure 1 depicts the BPNN structure. There are three different kinds of layers - Input, 

Hidden and Output Layers. The neurons in the input layer receive input signals from 
outside sources and transmit them to the neurons in the subsequent layers. In the hidden 
layer stage, no calculations are made. The input or hidden layer sends signals to the 
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neurons in the output layer. Between the input and output layers hidden layer neurons are 
connected [19] [20]. 
 

(a) . LEVENBERG–MARQUARDT [LM] ALGORITHM 

Many enhanced learning algorithms have been presented by the researchers to surmount 
the limitations of gradient descent-based systems. All these algorithms are derivatives of 
steepest gradient search, so ANN training is relatively slow. Second order learning 
algorithms have to be used for fast and efficient training; the most effective method is 
LM algorithm, which is a derivative of the Newton method. In NN model LM is one of 
the efficient and well-organized optimization algorithms. It is a combination of Gradient 
descents method and Gauss-Newton method. This combined technology is the best 
practice to explain a different range of optimization problems. This is a typical technique 
for the non-linear least square problem, and this iteration technique locates to the 
minimum of a function that is expressed as the sum of squares of non-linear functions. 
Gradient descent and Gauss-Newton methods use a series of calculations to find the 
solutions for non-linear problems [21].  
 
This is a hybrid technique, such that Gradient descents method and Gauss-Newton 
method converge for an optimum solution. To solve the different optimization problems 
this, type of hybrid technology is the best practice. The system is very effective to handle 
small and medium sets of data and solve non-linear equations. The LM algorithm was 
developed only for layer-by-layer ANN topology, which is far from optimal. LM 
algorithm is increasing the convergence speed of ANN. The system performance is 
calculated in Mean Square Error (MSE). The LM algorithm is still unable to avoid the 
drawback of local minimum. To surmount this problem a bio-inspired optimization 
algorithms was combined with the LM algorithm to train the NN [22] [23]. 

 

V. METHODOLOGY 
 

Preparation of data using simple pendulum experiment 

 
1. Measure the diameter of the spherical metallic bob using vernier callipers. From it 

calculate the radius r of the bob. 
2. Tie the bob to one end of an inextensible cotton thread. The other end is then 

passed through a split cork fixed to a retort stand. 
3. The length of the pendulum that is the length from the point of suspension to 

middle of the bob is set to a desired value. 
4. Displace the bob from the equilibrium position to one side with a small angular 

displacement and with the angle of oscillation being 10o and then release it gently 

such that bob executes to and fro motion in a straight line, without spinning and 
revolving elliptically. 
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5. Now start counting the oscillation. Stop watch is started when pendulum crosses 
the equilibrium position to one side either left or right and the time for 20 
oscillations is noted. Repeat the observation one more time for the same length. 

6. Calculate the time taken for 1 oscillation i.e., the time period using the equation  
T = t / 20 

7. Repeat the experiment by changing length. 
8. Record the observation in tabular form. 
9. Calculate  and L/  in each case and take the mean of L/ . 
10.  Find acceleration due to gravity g using, 
11. Now change the angle of oscillation  to 15   and then to 20  and repeat the same 

procedure. 
12. Repeat the whole experiment for different masses of the bob The experimentally 

obtained value of g is compared with its theoretical value and the percentage error 
is calculated. 
 

 Prediction of data using ANNs 

1. Preparation of data 
2. Open the MATLAB 
3. Add data to workspace. 

i. Select New 
ii. Rename the data 

iii. copy the variable to workspace 
iv. Transpose the variables. [Input, Target, Sample]. 

4. In command window type the command nn tool. 
5. Import the variables to neural networks. 
6. Create the neural network 

i. Network type- Feed forward back propagation. 
ii. Set the training parameters. 

7. Train the network. 
8. After the training is completed plot the regression analysis graph. 
9. Stimulate this trained system to predict the future response of the simple 

pendulum. 
 

VI. RESULTS AND DISCUSSION 
 
The training architectures of networks with varying numbers of hidden layers are 
depicted in the figures given below. Initially, a configuration with 10 hidden layers is 
employed for training, utilizing four input parameters, including angle, length, and time. 
Figure 3 illustrates the structure of the training process, where a neural network is 
constructed with four input nodes at the input layer, 10 hidden layers, and a single-output 
layer responsible for predicting acceleration due to gravity. 
The iterative training process continues until the optimal result is achieved, which, 
required 301 iterations. After the training is completed, the best validation performance, 
training state, and regression results are obtained. 
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Figure 3: Training structure for 10 hidden layers 

 

To get a better result the number of hidden layers changes to 25 and the training structure 
is shown in Figure 4. The iterative training process continues until the optimal result is 
achieved, which, in this case, required only 30 iterations. After the training is completed, 
the best validation performance, training state, and regression results are obtained. 

 

Figure 4: Training structure for 25 hidden layers 
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Finally, the number of hidden layers changes to 50 and the training structure is shown in 
Figure 5. The iterative training process again continues until the optimal result is 
achieved, which, in this case, required lesser iteration, i.e., 27 iterations and the time 
taken to complete the execution is 01 sec. After the training is completed, the best 
validation performance, training state, and regression results are obtained. 

 

Figure 5: Training structure for 50 hidden layers 

 

 Figures 6-8, below illustrate the Regression (R) analysis of the system. It is 
an arithmetical procedure for approximating the relationship between the variables. The 
regression standard scale is the association between goals and system response. The 
significance of the regression is ‘1’ means an adjacent association and is ‘0’ means 
random relationship between the parameters. Here, 70% of the data is used for the 
training, 15% is employed for validation and the remaining 15 % is used for testing. The 
regression analysis of network with different hidden layers such as 10, 25 and 50 are 
shown in Figures 6 - 8. 
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Figure 6: Regression analysis of network with 10 hidden layers 

 

 
Figure 7: Regression analysis of network with 25 hidden layers 
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Figure 8: Regression analysis of network with 50 hidden layers 

 
In the regression analysis, it becomes evident that R values are as follows: R = 0.99933 
for 10 hidden layers, R = 0.99981 for 25 hidden layers, and R = 0.99993 for 50 hidden 
layers. Notably, the highest R value is achieved when employing 50 hidden layers, 
suggesting that accuracy improves with the augmentation of hidden layers.  
 
The experiment has been carried out to determine the value of gravity using the 
pendulum swing method where the method involves collection of period data, T from 
pendulum swings. If we know the length, L of the rope used by the pendulum, the 
gravitational value can be obtained. 
  
Gravitational values are taken which are closest to the reference gravity value for each 
different rope length. The data obtained is as shown in Table 1. This set of data was 
interpolated using network to obtain data which could not be measured in the experiment. 
This set of interpolated data is shown in Table 2. These data obtained experimentally and 
by interpolation are appropriate for training and application to machine learning system 
which can further predict the gravity values for rope length and pendulum swing periods 
that are greater than the variables and parameters possible for the experiments. The set of 
predicted data obtained is as shown in Table 3.  
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Table 1: Test result data 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sl. No Angle Length (m) Time(s) g(kg.m/s2) Accuracy (%) 

1 10 0.146 0.799 9.032 92.162 

2 20 0.146 0.793 9.168 93.554 

3 15 0.146 0.792 9.173 93.604 

4 20 0.193 0.917 9.037 92.210 

5 10 0.193 0.916 9.059 92.437 

6 15 0.193 0.907 9.239 94.278 

7 20 0.273 1.081 9.203 93.906 

8 15 0.273 1.065 9.475 96.686 

9 10 0.273 1.062 9.534 97.282 

10 20 0.313 1.169 9.028 92.119 

11 15 0.313 1.155 9.247 94.356 

12 10 0.313 1.153 9.280 94.690 

13 20 0.453 1.391 9.223 94.114 

14 15 0.453 1.372 9.481 96.744 

15 10 0.453 1.358 9.684 98.814 

16 20 0.466 1.410 9.244 94.324 

17 15 0.466 1.409 9.258 94.469 

18 10 0.466 1.403 9.340 95.301 

19 20 0.469 1.429 9.053 92.373 

20 15 0.469 1.406 9.360 95.506 

21 10 0.469 1.402 9.417 96.090 

22 20 0.513 1.479 9.246 94.351 

23 15 0.513 1.471 9.344 95.348 

24 10 0.513 1.458 9.512 97.057 

25 10 0.526 1.493 9.303 94.932 

26 20 0.589 1.577 9.340 95.310 

27 15 0.589 1.573 9.391 95.830 

28 10 0.589 1.553 9.631 98.278 

29 10 0.693 1.693 9.534 97.285 

30 15 0.693 1.690 9.563 97.586 

31 20 0.695 1.706 9.418 96.100 

32 20 0.753 1.791 9.249 94.381 

33 15 0.753 1.776 9.407 95.987 

34 10 0.753 1.761 9.576 97.711 

35 20 0.813 1.852 9.345 95.354 

36 15 0.813 1.842 9.447 96.397 

37 10 0.813 1.839 9.480 96.737 

38 20 0.886 1.934 9.345 95.354 

39 15 0.886 1.929 9.396 95.878 

40 10 0.886 1.928 9.403 95.945 

41 15 0.933 2.009 9.109 92.953 

42 20 0.933 2.009 9.116 93.023 

43 10 0.933 1.988 9.309 94.986 

44 10 0.953 2.033 9.094 92.791 

45 20 0.953 2.031 9.105 92.907 

46 15 0.953 2.029 9.116 93.021 
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Table 2: Data interpolated & predicted  
 

Sl. No Angle Length (m) Time(s) g(kg.m/s2) Accuracy (%) 

1 20 0.393 1.296 9.215 94.042 
2 15 0.393 1.295 9.237 94.260 
3 10 0.393 1.280 9.456 96.483 
4 10 0.406 1.312 9.298 94.882 
5 15 0.406 1.308 9.359 95.500 
6 20 0.406 1.297 9.526 97.202 
7 15 0.409 1.315 9.327 95.184 
8 20 0.409 1.310 9.407 95.985 
9 10 0.409 1.304 9.486 96.797 
10 20 0.413 1.333 9.156 93.424 
11 15 0.413 1.307 9.530 97.252 
12 10 0.413 1.305 9.552 97.476 
13 15 0.426 1.339 9.367 95.583 
14 10 0.426 1.338 9.392 95.833 
15 20 0.426 1.316 9.735 99.336 
16 20 0.429 1.363 9.105 92.931 
17 10 0.429 1.346 9.338 95.293 
18 15 0.429 1.345 9.359 95.506 
19 20 0.433 1.355 9.289 94.798 
20 15 0.433 1.344 9.447 96.392 

 
 
 
Table 3: Data on overall results of interpolation and prediction  
 

Sl. No Angle Length (m) Time(s) g(kg.m/s2) 
No. of Hidden Layers 

10 25 50 

1 20 0.393 1.296 9.216 9.216 9.220 9.215 

2 15 0.393 1.295 9.238 9.237 9.235 9.237 

3 10 0.393 1.280 9.455 9.455 9.455 9.456 

4 10 0.406 1.312 9.298 9.298 9.299 9.298 

5 15 0.406 1.308 9.359 9.359 9.360 9.359 

6 20 0.406 1.297 9.526 9.526 9.522 9.526 

7 15 0.409 1.315 9.328 9.328 9.328 9.327 

8 20 0.409 1.310 9.407 9.407 9.403 9.407 

9 10 0.409 1.304 9.486 9.486 9.485 9.486 

10 20 0.413 1.333 9.156 9.156 9.155 9.156 

11 15 0.413 1.307 9.531 9.531 9.530 9.530 

12 10 0.413 1.305 9.553 9.552 9.552 9.552 

13 15 0.426 1.339 9.367 9.367 9.368 9.367 

14 10 0.426 1.338 9.392 9.392 9.391 9.392 

15 20 0.426 1.316 9.697 9.655 9.625 9.735 

16 20 0.429 1.363 9.107 9.106 9.103 9.105 

17 10 0.429 1.346 9.339 9.339 9.338 9.338 

18 15 0.429 1.345 9.360 9.360 9.360 9.359 

19 20 0.433 1.355 9.290 9.290 9.293 9.289 

20 15 0.433 1.344 9.446 9.447 9.448 9.447 
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Table 3 shows the network model with different number of hidden layers.  Lowest error 
rate is obtained at 50 hidden layers. This shows that the accuracy of the NN model is best 
when using 50 hidden layers compared with the lower hidden layers for this case. When 
using a greater number of hidden layers, the training time increases. Next, we analyze the 
error rate. The average error rate for different model is shown in Figure 9. 
  

 
  

Figure 9: Average error rate 
  

The Figure 9 displays an average error rate of 4.311 for experimental results. When 
employing 10 hidden layers, the predicted output yields an average error rate of 4.334. 
Upon adjusting the number of hidden layers to 25, an average error rate of 4.353 is 
observed. Interestingly, when employing 50 hidden layers, the average error rate 
decreases to 4.317, which is lower than the rates observed with fewer hidden layers. The 
average accuracy of the present system is 95.708.  Comparison of error rate for different 
model is shown in Figure 10. 
 

 
Figure 10: Comparison of error rates 
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VII. CONCLUSION AND FUTURE SCOPE 

 
In conclusion, the project on the "Realization of Artificial Neural Network to 

Determine the Value of Gravity in Simple Mathematical Pendulum Experiment" has been 
a significant exploration into the integration of modern machine learning techniques with 
classical physics experiments. Throughout this project, we have achieved several 
important milestones and gained valuable insights. First and foremost, we successfully 
designed and conducted a simple mathematical pendulum experiment, collecting data on 
the pendulum's oscillation periods for various lengths. These empirical observations 
formed the foundation of our project, providing the necessary dataset for training and 
testing our artificial neural network. 

 
The implementation of the artificial neural network to predict the value of gravity based 

on the pendulum's oscillation periods demonstrated the potential of machine learning in 
scientific research. By feeding the network with input data and fine-tuning its parameters, 
we were able to create a predictive model that offered accurate estimations of the 
gravitational acceleration constant. This project underscores the versatility of artificial 
neural networks, not only for complex tasks but also for scientific measurements and 
experimentation. It highlights the potential for machine learning to complement 
traditional scientific methods, offering new perspectives on data analysis and prediction. 
Moreover, the project has contributed to a deeper understanding of the relationship 
between the length of a simple pendulum and the period of its oscillation, as well as the 
practical application of neural networks in solving real-world physics problems. 

 
Future Scope 

 
The "Realization of Artificial Neural Network to Determine the Value of Gravity in 
Simple Mathematical Pendulum Experiment" project has successfully bridged the gap 
between classical physics and modern machine learning. It represents a significant step 
forward in utilizing artificial intelligence to enhance scientific research and provides a 
valuable framework for further exploration and integration of these technologies in the 
field of experimental physics. This project has not only achieved its intended goals but 
has also opened doors to exciting possibilities at the intersection of physics and machine 
learning. Using ANN, the data obtained from a relatively simple pendulum experiment 
can be extrapolated to train the algorithms to predict the gravitational values for similar 
yet complex mechanical systems. We propose to extend this work to study more chaotic 
systems like double pendulum and utilize the versatility of ANN to obtain accurate 
values. 
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