Spectrophotometric and Chromatographic Methods for Determination of Calcium Channel Blockers: A Review

Padmanabh Deshpande*, Pooja Badgujar, Abhishek Pawane, Shivani Kolekar, Sakshi Bhendekar, Sayali Kohakade

All India Shri Shivaji Memorial Society's College of Pharmacy, Department of

Pharmaceutical Quality Assurance, Kennedy Road, Near RTO, Pune-411001

* Address for Correspondence:

Dr. Padmanabh B. Deshpande Assistant Professor Department of Pharmaceutical Quality Assurance AISSMS College of Pharmacy Kennedy Road, Near R.T.O. Pune-411001, Maharashtra, India Ph. No. +91-9763740388

ABSTRACT

Several analytical techniques are advantageous in pharmaceutical field to estimate the quality of active pharmaceutical ingredients, amount of drug in biological fluids and in formulations. The intention of this review article is to provide paramount current analytical methods for analysis of calcium channel blockers like felodipine, isradipine, amlodipine, and nifedipine in pure form and its related formulations including novel formulations. Calcium Channel blockers is a major chemical class of drugs used in the treatment of hypertension and various coronary artery diseases. The present review includes the current analytical methods available for above active pharmaceutical ingredients and its related formulations with extensive method conditions which can be used in analysis of calcium channel blockers drugs outlined from official pharmacopoeias and other relevant research articles. From the review, it can be inferred that a vast array of chromatographic techniques have been created, with HPLC-UV techniques often employed for calcium channel blocker detection and estimation.

Keywords: Felodipine, Isradipine, Amlodipine, Nifedipine, Chromatographic methods and Spectrophotometric methods.

INTRODUCTION

The calcium-channel blockers signify a group of organic chemical structures that share the ability to inhibit Ca2+ entry into excitable cells. In coronary and peripheral arterial smooth muscle and the heart, inhibition of Ca2+ entry blunts the ability of Ca2+ to serve as an intracellular messenger. Thus, calcium-channel blockers are smooth-muscle dilators and have a negative inotropic effect on the working myocardial cells of the atria and ventricles. Calciumchannel blockers also have effects on impulse formation and conduction in some regions of the heart. A fast, Na+-dependent ionic current is responsible for the upstroke of the action potential in the working cells of the atria and ventricles and in the rapidly conducting cells of the His-Purkinje system, so that the calcium-channel blockers do not inhibit conduction in these cells. In the sinoatrial and atrioventricular nodes, where depolarization is due primarily to a Ca2+dependent slow inward current, the calcium-channel blockers slow the sinus pacemaker and inhibit atrioventricular conduction. The actions of different calcium-channel blockers are not always similar; for example, nifedipine is much more potent as an inhibitor of calcium channels in smooth muscle than in the heart, whereas verapamil and diltiazem are approximately equipotent in heart and vascular smooth muscle. It is likely that the calcium-channel blockers reach their specific binding sites in membranes by first dissolving in the phospholipid bilayer, after which they may interact with hydrophobic regions of proteins that make up, or regulate, these channels. Further knowledge of these molecular properties should facilitate the development of new calcium-channel blockers with improved specificity. [1]

Calcium-channel blockers target L-type calcium channels and binds to them. These L-type calcium channels are located on the smooth muscle of vessels, cardiac myocytes, and nodal tissues in heart. These channels regulate the entry of calcium into muscle cells, which stimulates smooth muscle and cardiac myocyte to contract.Vasodilation occurs when calcium entry is blocked this way into cells. Hence there will be decrease in myocardial force generation (negative inotropy), decrease in heart rate (negative chronotropic), and decrease in conduction velocity within the heart (negative dromotropic) [2]

Calcium channel blockerseffectively lower blood pressure, especially in combination with other drugs, and some formulations of agents of this class are approved for treating angina or cardiac dysrhythmias. They reduce blood pressure across all patient groups, regardless of sex, race/ethnicity, age, and dietary sodium intake. Non-dihydropyridine calcium channel blockers are more negatively chronotropic and inotropic than the dihydropyridine subclass, which is important for patients with cardiac dysrhythmias or who need β -blockers. Extensive

experience in comparative randomized trials indicates that an initial calcium antagonist can prevent all major types of cardiovascular disease, except heart failure (for which a diuretic is superior). Initial dihydropyridine calcium channel blockers have not reduced the rate of progression of renal disease as well as inhibitors of the renin-angiotensin system, although members of the non-dihydropyridine subclass can reduce albuminuria. [3]

Significant research has been done on a variety of analytical approaches that could be helpful in estimating calcium channel blockers in biological matrices and formulations. For the estimation of calcium channel blocker alone or in combination with other medications, analytical techniques such as ultraviolet (UV) spectrophotometry, HPLC, High Performance Thin Layer Chromatography have been reported. This thorough study includes the majority of the spectrophotometric and chromatographic techniques that have been reported for determining pure forms of isradipine, felodipine, amlodipine, and nifedipine in various pharmaceutical dosage forms and biological fluids up to this point.

Mechanism of action

Calcium channel antagonists block the inward movement of calcium by binding to the L-type "long-acting" voltage-gated calcium channels in the heart, vascular smooth muscle, and pancreas. There are two major categories of calcium channel antagonists based on their primary physiologic effects. The non-dihydropyridines have inhibitory effects on the sinoatrial (SA), and atrioventricular (AV) nodes are resulting in a slowing of cardiac conduction and contractility. This allows for the treatment of hypertension, reduces oxygen demand, and helps to control the rate in tachydysrhythmias. The dihydropyridines, in therapeutic dosing, have a little direct effect on the myocardium, and instead, are more often peripheral vasodilators, which is why they are useful for hypertension, post-intracranial haemorrhage associated vasospasm, and migraines. [4-5].

Pharmacokinetics

The calcium channel blockers have the same anti-hypertensive actions, they have a vast difference in their pharmacological actions, pharmacokinetic profile. Calcium channel antagonists are absorbed well orally, however many have low bioavailability due to hepatic first-pass metabolism, primarily by CYP3A4. Calcium channel antagonists are highly proteinbound, and many have high volumes of distribution. In repeated doses, or overdose, the hepatic enzymes responsible for metabolism become saturated and reduce first-pass effects, which therefore increases absorption of the active drug. Modified release formulations and saturation of metabolism of these drugs increase the half-life of various calcium channel antagonists. Calcium channel antagonists are primarily excreted renally after metabolism [6]. Summary of

different routes of administration, bioavailability, metabolism, plasma protein binding and excretion between the individual compounds is depicted in Table 1. The different physicochemical properties of calcium channel blockers are represented in Table 2.Chemical structures, nomenclatures and molecular weights of these drugs are shown in Table 3.

Pharmacokinetic	Felodipine	Isradipine	Amlodipine	Nifedipine
Parameter				
Administration Route	Oral	Oral	Oral	Oral
Bioavailability (%)	20	15-24	60-65	56 -77
Metabolism	CYP3A4	CYP3A4	CYP3A4	СҮРЗА
Elimination Half-Life (hr)	25	8	35-45	1.7
Plasma Protein Binding (%)	More Than 99	95	95	98
Excretion	Urine	Urine	Urine	Urine

 Table 1: Pharmacokinetic properties of calcium channel blockers

Table 2: Physicochemical properties of studied calcium channel blockers

Drug	Pka	Solubility	λmax, nm
Felodipine	5.07	Soluble in organic solvents such as ethanol, DMSO,	237
		DMF and sparingly soluble in aqueous buffers	
Isradipine	2.56	Practically insoluble in water, soluble in ethanol and freely	332
		soluble in acetone, chloroform and methylene chloride	
Amlodipine	8.6	Slightly Soluble in water, freely soluble in methanol	365
Nifedipine	3.93	Soluble in methanol, ethyl acetate, acetone	546

Drug	Chemical Structure	Chemical Name	Mol. Wt.
Felodipine		5- <i>O</i> -Ethyl 3- <i>O</i> -Methyl (4 <i>s</i>)-4-	384.2
	NH	(2,3-Dichlorophenyl)-2,6-	
		Dimethyl-1,4-Dihydropyridine-	
		3,5-Dicarboxylate	
Isradipine	~ .	3-Methyl 5-Propan-2-Yl 4-	371.38
		(2,1,3-Benzoxadiazol-4-Yl)-2,6-	
	N NH	Dimethyl-1,4-Dihydropyridine-	
		3,5-Dicarboxylate	
Amlodipine		3-O-Ethyl 5-O-Methyl 2-(2-	408.87
	NH	Aminoethoxymethyl)-4-(2-	
		Chlorophenyl)-6-Methyl-1,4-	
		Dihydropyridine-3,5-	
	CI OT	Dicarboxylate	
Nifedipine	°	Nifedipine (3,5-Dimethyl 2,6-	346.33
	NH	Dimethyl-4-(2-Nitrophenyl)-1,4-	
		Dihydropyridine-3,5-	
		Dicarboxylate)	

Table 3: Chemical structures of studied calcium channel blockers

Reported Analytical Methods

Ultraviolet spectrophotometry

Ultraviolet spectrophotometric methods such as Vierodt's, absorption ratio, area under curve method and Dualwavelengthmethodshavebeenreported for the determination of different calcium channel blockers in bulk and pharmaceutical dosage forms. Ultraviolet spectrophotometric methods for estimation of Felodipine as bulk drug and in tablet dosage form has been reported [7-9]. Ultraviolet spectrophotometric methods for simultaneous determination of felodipine with atorvastatin calcium are reported [10, 11]. Ultraviolet

spectrophotometric methods for estimation of Isradipine in single and in combination with butylated hydroxyanisole were also reported [12, 13]. Spectrophotometric methods for determination of amlodipine as single drug [14-16] and in combination with Celecoxib [17], Atorvastatin [18, 19], Hydrochlorothiazide [20], Telmisartan [21], Aliskiren [22], Valsartan [23], Atenolol [24] were also found in the literature.UVspectrophotometric method for simultaneous estimation of Nifedipine in combination with Atenolol [25] and Telmisartan [26] are also reported. The summary of reported spectrophotometric methods for estimation of calcium channel blockers is given in Table 4.

Sr	Drug	Method	λmax (nm)	Solvent	Ref.
No.					No.
1	Felodipine	Calibration curve	362.4	Methanol	7
2	Felodipine	Absorbance maxima	363.5	Ethanol	8
3	Felodipine	Absorbance maxima	237	Methanol	9
4	Felodipine	Absorbance maxima	366.5	Methanol: 0.1N HCl(1: 9, v/v)	10
5	Felodipine	Simultaneous equation	268	Acetonitrile: water (70: 30, v/v)	11
6	Isradipine	Absorbance maxima	372	Methanol: chloroform (7:3, v/v)	12
7	Isradipine	Absorbance maxima	326	Methanol	13
8	Amlodipine	Calibration curve	365	Sodium acetate	14
9	Amlodipine	Calibration curve	237, 360	Methanol	15
10	Amlodipine	Absorbance maxima	238	Water	16
11	Amlodipine with Celecoxib	Calibration curve	364.3	Ethanol	17
12	Amlodipine with Atorvastatin	Simultaneous equation	245, 363	Methanol	18
13	Amlodipine with Atorvastatin	Simultaneous equation	240, 369	Phosphate buffer	19

Table 4: UV methods for determination of calcium channel blockers

14	Amlodipine with	Simultaneous equation	238, 271	Sodium hydroxide	20
	Hydrochlorothiazide				
15	Amlodipine besylate	Absorbance correction	365.2, 291.2	0.1 N Hcl	21
	with Telmisartan				
16	Amlodipinewith	Absorbance correction	279, 361	Methanol	22
	Aliskiren				
17	Amlodipine with	Simultaneous Equation	250, 238	Methanol	23
	Valsartan	Absorption Correction			
18	Amlodipine besylate	Calibration Curve	278.5, 286	Methanol	24
	with Atenolol				
19	Nifedipine with	Simultaneous equation	328, 276	Methanol	25
	Atenolol				
20	Nifedipine with	Simultaneous equation	292.2, 235.5	Methanol	26
	Telmisartan				

Chromatographic methods

High performance thin layer chromatography

Validated HPTLC methods for estimation of Felodipine in bulk and pharmaceutical dosage form has been developed and reported [27, 28].TLC-densitometric methods for simultaneous determination of Felodipine in combination with metoprolol and ramipril in fixed dose combinations tablets have been developed and validated [29, 30]. HPTLC method for estimation of Isradipine in bulk drug and butylated hydroxyanisole in selected food stuffs is also reported [31]. Validated HPTLC methods for simultaneous estimation of amlodipine with Metoprolol Succinate [32, 33], Benazepril [34] Nebivolol Hydrochloride [35] Hydrochlorothiazide and Telmisartan [36] Celecoxib [37] Olmesartan medoxomil and Hydrochlorothiazide [38] Hydrochlorothiazide and Valsartan [39] Telmisartan [40] AzilsartanMedoxomil [41] atenolol [42]Aliskiren and Hydrochlorothiazide [43] Hydrochlorothiazide and Olmesartan Medoxomil [44] Losartan potassium and Hydrochlorothiazide [45, 46] in pharmaceutical formulations has been developed and validated. High performance thin layer chromatographic determination of Nifedipine as bulk drug and in pharmaceuticals and human serum is also reported [47, 48]. ThesummaryofreportedHPTLCdensitometricmethodsforseparationandestimation of calcium channel blockers inhibitors in bulk and pharmaceutical dosage forms is listed in Table 5.

Sr	Drug	Mobile Phase	λmax	Ref.
No.			(nm)	No.
1	Felodipine	n-Hexane: ethyl acetate (6:4, v/v)	366	27
2	Felodipine	Acetonitrile: water: glacial acetic acid	237	28
		(8: 2: 1, v/v/v)		
3	Felodipine with	Toluene: ethyl acetate: methanol: ammonia	223	29
	Metoprolol, Ramipril	(20: 8: 6: 0.6, v/v/v/v)		
4	Felodipine with	Chloroform: toluene: methanol: glacial acetic	238	30
	Metoprolol	acid (6: 3: 1: 0.04, v/v/v/v)		
5	Isradipine	Toluene: methanol: glacial acetic acid	331	31
		(9: 1: 0.05, v/v/v)		
6	Amlodipine	Chloroform: methanol: acetic acid	365	32
		(15 :2.5: 0.4, v/v/v)		
7	Amlodipine with	Toluene: ethyl acetate: methanol: triethylamine	254	33
	Metoprolol	(4: 1: 1: 0.4, v/v/v/v)		
8	Amlodipine with	Ethyl acetate: methanol: ammonia	254	34
	Benazepril	(8.5: 2: 1, v/v/v)		
9	Amlodipine with	Methylene chloride: methanol: ammonia	285	35
	Nebivolol	(8.5:1:0.5, v/v/v)		
10	Amlodipine with	Chloroform: butanol: ammonia	254	36
	Hydrochlorothiazide,	(6: 4: 0.1, v/v/v)		
	Telmisartan			
11	Amlodipine with	Toluene: methanol: acetonitrile (6.6: 1.5: 2,	240	37
	Celecoxib	v/v/v/v)		
12	Amlodipine with	Toluene: chloroform: methanol: acetonitrile:	232	38
	Olmesartan	formic acid (2: 7: 1.8: 0.8: 0.2, v/v/v/v/v)		
	Medoxomil,			
	Hydrochlorothiazide			
13	Amlodipine with	Ethyl acetate: methanol: toluene: ammonia	232	39
	Hydrochlorothiazide,	(7.5: 3: 2: 0.8, v/v/v/v)		
	Valsartan			

Table 5: HPTLC methods for determination of calcium channel blockers

14	Amlodipine with	Chloroform: methanol: formic acid	251	40
	Telmisartan	(8: 2.5: 0.5, v/v/v)		
15	Amlodipine with	Chloroform: methanol: glacial acetic acid	243	41
	AzilsartanMedoxomil	(7: 1.5: 0.5, v/v/v)		
16	Amlodipine with	Methylene chloride: methanol: ammonia	230	42
	Atenolol	(8.8: 1.3: 0.1, v/v/v)		
17	Amlodipine with	Ethyl acetate: methanol: ammonia	229	43
	Aliskiren,	(7.5: 2.8: 0.2, v/v/v)		
	Hydrochlorothiazide			
18	Amlodipine with	Chloroform: ethyl acetate: toluene: methanol:	230	44
	Hydrochlorothiazide,	glacial acetic acid		
	Olmesartan	(19.5: 19.5: 38.5: 19.5: 3, v/v/v/v/v)		
	Medoxomil			
19	Amlodipine with	Chloroform: ethyl acetate: methanol: ammonia	232	45
	Losartan Potassium,	(4: 4: 2: 0.2, v/v/v/v)		
	Hydrochlorothiazide			
20	Amlodipine with	Chloroform: methanol: acetone: formic acid	254	46
	Losartan Potassium,	(7.5 : 1.3 : 0.5 : 0.03, v/v/v/v)		
	Hydrochlorothiazide			
21	Nifedipine	Chloroform: ethyl acetate: cyclohexane	236	47
		(19: 2: 2, v/v/v)		
22	Nifedipine	Chloroform: ethyl acetate: cyclohexane	236	48
		(19: 2: 2, v/v/v)		
		1		1

High Performance Liquid Chromatography

High performance liquid chromatography has been widely used for determination of studied calcium channel blockers. Also, HPLC come out to be a method frequently regularly used in all fields of calcium channel blockers. The various reported HPLC methods [49-109] based on use of different stationary phases (silica C8, C18, cyanopropyl), mobile phases and using UV, fluorescence or tandem mass spectrometry for detection and quantitative determination of calcium channel blockers either as single or in combination with other drugs in pure, pharmaceutical dosage forms and biological fluids are shown in Table 6.

S.	Drug (S)	Column	Mobile Phase	λmax	Ref.
No.				(nm)	No.
1	Felodipine	C18	Methanol: acetonitrile: water	238	49
			(50:15: 35, v/v/v)		
2	Felodipine with	Adsorbosil C8	Methanol: acetonitrile: water	250	50
	Ramipril		(50:30:20, v/v/v)		
3	Felodipine	Luna C18	Methanol: 0.055 M phosphate buffer	275	51
			(83:17, v/v)		
4	Felodipine in plasma	Capcell pak C8	5 Mm Phosphate Buffer (pH 4.8):	360	52
			acetonitrile (25: 75, v/v)		
5	Felodipine	Inertsil ODS C18	Buffer: acetonitrile: methanol	238	53
			(2:2: 1, v/v/v)		
6	Felodipine	HiQ Sil C 18 HS	Methanol : 0.055M phosphate buffer	232	54
			(pH 3) (83: 17, v/v)		
7	Felodipine	C18	Diethyl ether: hexane	237	55
			(80:20, v/v)		
8	Felodipine	Eclipse XDB C18	Acetonitrile: 0.1 % formic acid	238	56
			(75:25, v/v)		
9	Felodipine	C18	Tetra butyl ammonium hydrogen	237	57
			sulphate: acetonitrile (18: 82, v/v)		
10	Felodipine	Thermo BDS	Phosphate buffer (pH 3): acetonitrile	238	58
		Hypersil C18	(50:50, v/v)		
11	Felodipine	C18	Acetonitrile: water	243	59
			(80:20, v/v)		
12	Felodipine with	Hyperchom C18	Potassium dihydrogen phosphate	210	60
	Ramipril		(pH 3.5): methanol: acetonitrile		
			(15:15:70, v/v/v)		
13	Felodipine with	Phenomenex C8	Water (pH 3.5):acetonitrile :	225	61
	Metoprolol		methanol (30:60: 10, v/v/v)		
14	Felodipine with	Hypersil BDS	Phosphate buffer (pH 5.5):	243	62
	Ramipril	C18	acetonitrile (40:60, v/v)		

Table 6: RP-HPLC methods for determination of calcium channel blockers

15	Felodipine	Phenomenex	Phosphate buffer (pH 3): acetonitrile	237	63
	withEnalpril	Luna C18	(25:75, v/v)		
16	Felodipine with	Lichrosorb RP 8	Acetonitrile 0.001 M KH ₂ PO ₄ (pH 2)	215	64
	Enalapril		(35:65, v/v)		
17	Felodipine with	InertsilC18	Acetonitrile: 50 Mm ammonium	240	65
	Pioglitazone		acetate buffer(67:33, v/v)		
18	Felodipine with	Hypersil BDS C8	Water (pH 3.0): acetonitrile :	254	66
	Aliskiren		methanol (20:30:50, v/v/v)		
19	Felodipine with	HIQ Sil C18 HS	Acetonitrile: water	238	67
	Atorvastatin		(70:30, v/v)		
20	Isradipine	Agilent Zorbax	Methanol: acetonitrile: 0.1% OPA	264	68
		C8	(55:35:10, v/v/v)		
21	Isradipine	Kromasil C18	Water: methanol:THF	330	69
			(50:40:10, v/v/v)		
22	Isradipine	C18	Methanol: acetonitrile: acetate buffer	290	70
			(pH 2.8)(60:30: 10, v/v/v)		
23	Isradipine	C18	Methanol: water (70: 30, v/v)	290	71
24	Isradipine	Chiralpak AD	Hexane: 2-propanol: ethanol	325	72
			(94:4:2, v/v/v)		
25	Isradipine	C8	Water: acetonitrile (50: 50,v/v)	290	73
26	Isradipine	C18	Methanol: water (60:40, v/v)	325	74
27	Isradipine	Kromasil C18	Water: methanol: THF	326	75
28	Amlodipine	Waters C18	Acetonitrile: 70mm KH ₂ PO ₄ buffer:	240	76
			methanol(15:30:55, v/v/v)		
29	Amlodipine	Nucleosil C8	0.01 M Sodium dihydrogen	239	77
			phosphate buffer: acetonitrile		
			(63:37, v/v)		
30	Amlodipine with	Thermosil C18	Potassium dihydrogen	248	78
	Hydrochlorothiazide,		orthophosphate buffer: methanol		
	Telmisartan		(40:60, v/v)		

31	Amlodipine	Phenomenex	Acetonitrile: 0.05 M phosphate	227	79
	withValsartan,	KinetexC18	buffer (40: 60, v/v)		
	Hydrochlorothiazide				
32	Amlodipine with	Grace Smart RP	Phosphate Buffer: acetonitrile:	246	80
	Atorvastatin	C18	methanol (53:43:4, v/v/v)		
33	Amlodipine with	Hypersil C18	Acetonitrile: phosphate buffer (pH	237	81
	Valsartan,		6.8) (55:45, v/v)		
	Hydrochlorothiazide				
34	Amlodipine with	Phenomenex	Phosphate buffer (pH 4): acetonitrile	236	82
	Telmisartan	Luna C18	(42:58, v/v)		
35	Amlodipine with	Prontosil C18	Methanol: potassium dihydrogen	240	83
	Telmisartan		phosphate buffer (75:25, v/v)		
36	Amlodipine Besylate	Eclipse Xdb C8	Buffer (pH 2.6): acetonitrile	210	84
	with perindopril		(65:35, v/v)		
	erbumine				
37	Amlodipine with	RP C18	Phosphate buffer (pH 7): methanol:	238	85
	Losartan,		acetonitrile(60: 20: 20, v/v/v)		
	Hydrochlorthiazide				
38	Amlodipine with	C18 Column	Phosphate buffer (pH 3.6):	240	86
	Valsartan	ODS	acetonitrile: methanol		
			(46:44:10, v/v/v)		
39	Amlodipine with	KromasilC18	0.02 M Phosphate buffer (pH 3) :	221	87
	Metoprolol		acetonitrile (70: 30, v/v)		
40	Nifedipine in human	C18	KH2PO4 (pH 4.8) : acetonitrile	240	88
	plasma		(42:58, v/v)		
41	Nifedipine	Novopak C18	Methanol: water(48:52, v/v)	235	89
42	Nifedipine	C18	Phosphate buffer: acetonitrile	242	90
			(60:40, v/v)		
43	Nifedipine	Octadecyl Silane	Acetonitrile: TEA(78:22, v/v)	326	91
44	Nifedipine with	Hypersil BDS	Buffer (0.05 KH ₂ PO ₄ pH	234	92
	Lignocaine Hcl	C18	3.0):Methanol(50:50, v/v)		

45	Nifedipine	RP C18	Methanol: water(70:30,v/v)	262	93
46	Nifedipine	C18	Acetonitrile: methanol: water (25:25:50,v/v/v)	235	94
47	Nifedipine with Atenolol	C8	Phosphate buffer: methanol (75:25, v/v)	237	95
48	Nifedipine	C18	Methanol: water(40:60, v/v)	237	96
49	Nifedipine with Atenolol	RP C18	Acetonitrile:50 mM sodium perchlorate (50:50, v/v)	230	97
50	Nifedipine	Shim-Pack CLC ODS C18	Methanol: water(70:30, v/v)	238	98
51	Nifedipine with Triamterene	ODS C18	Methanol: water(80:20, v/v)	238	99
52	Nifedipine with Atenolol	Phenomenex Kinetex C18	Methanol: orthophosphoric acid (75:25, v/v)	237	100
53	Nifedipine	Primesil C8	Acetonitrile: methanol: water (9:36:55, v/v/v)	235	101
54	Nifedipine with Atenolol	ODS C18	Methanol: acetonitrile: phosphate buffer(60:20:20, v/v/v)	235	102
55	Nifedipine	C18	Methanol:0.1% trifluoroacetic acid(55:45, v/v)	265	103
56	Nifedipine with Nateglinide, Lovastatin	C18	Acetonitrile:10 mm phosphate buffer(60:40, v/v)	208	104
57	Nifedipine in plasma	Nova Pak C18	Acetonitrile: water (48:52, v/v)	240	105
58	Nifedipine in plasma	C18	Acetonitrile: 5mm ammonium acetate (60:40, v/v)	240	106

59	Nifedipine with Atenolol	YMC Pack C18	Acetonitrile:phosphate buffer (62.5:37:5, v/v)	230	107
60	Nifedipine	C18	Methanol: triethylamine (68: 32, v/v)	235	108
61	Nifedipine with Atenolol	C18	Methanol: orthophosphoric acid (70:30, v/v)	233	109

CONCLUSION

This review focuses on different spectrophotometric and chromatographic methods which are reported for the determination of four calcium channel blockers viz. felodipine, isradipine, amlodipine, and nifedipine in bulk, different pharmaceutical dosage forms and biological matrices. The studied data revealed that HPLC was comprehensively used for the quantitative determination of calcium channel blockers as it offers excellent specificity and adequate precision. This review will assist in appropriate selection of analytical technique, solvent, mobile phase, and column, detector based on available analytical instruments and chemicals, by referring tabulated extensive method conditions. It can be implemented in quality control and quality assurance department for quality assessment of diverse pharmaceutical formulations.

REFERENCES

- 1. Katz AM.Pharmacology and mechanisms of action of calcium-channel blockers. J Clin Hypertens. 1986; 2(3):28S-37S.
- 2. Shah K, Seeley S, Schulz C, Fisher J, Gururaja Rao S. Calcium channels in the heart: Disease states and drugs. Cells. 2022; 11(6):943.
- 3. Elliott WJ, Ram VS. Calcium channel blockers. J Clin Hypertens. 2011; 13(9): 687-689.
- 4. PavasiniR, Camici PG, Crea F, Danchin N. Anti-anginal drugs: Systematic review and clinical implications. Int J Cardiol. 2019; 15:283:55-63.
- 5. Lin Y, Ma L. Blood pressure lowering effect of calcium channel blockers on perioperative hypertension: A systematic review and meta-analysis. Medicine. 2018; 97(48):13152.
- Kishor S. A complete guide on the pharmacologic and pharmacotherapeutic aspects of calcium channel blockers: An extensive review.Int J Pharm Sci Res. 2019; 10(11): 4830-4843.
- Nimje HM, Oswal RJ, Kshirsagar SS, Chavan M. Spectrophotometric analysis for estimation of felodipine in tablet dosage form by calibration curve method. Research J Pharm Tech. 2011; 4(12): 1805-1806.
- Chhajed SS, Sonawane SS, Patil VP, Mandan J, Kshirsagar SJ. Development and validation of UV spectrophotometric method for estimation of felodipine using green solvent in tablet formulation. Acta Scientific Pharmaceutical Sciences. 2018; 2(4): 13-15.
- Thorat VM, Pawar SS, Pande VV, Arote SR, Musmade DS. Development and validation of UV spectrophotometric method for estimation of process related impurity in felodipine bulk and formulation. Der Pharmacia Lettre. 2015; 7(4):284-290.
- Rajesh K, Rajalakshmi R, Vijayaraj S, Sreelakshmi T.Simultaneous estimation of atorvastatin calcium and felodipine by UV spectrophotometric method in formulation. Asian J Research Chem. 2011; 4(8):1202-1205.
- Jadhav NR, Kambar RS, Nadaf SJ. Dual wavelength spectrophotometric method for simultaneous estimation of atorvastatin calcium and felodipine from tablet dosage form. Advances in Chemistry. 2014; 1-6.
- Katariya H, Prajapati J. Development and validation of UVspectrophotometric method for determination of isradipine loaded into solid lipid nanoparticles. Int J Pharm Sci Rev Res. 2013; 20(28): 162-166.
- 13. Sumithra S.Development of validated UV spectroscopic and chromatographic methods for the estimation of isradipine in bulk drug and butylated hydroxyanisolein selected food

stuffs. Master's thesis, Sri Ramakrishna Institute of Paramedical Sciences, Coimbatore. 2017.

- 14. Jain N, Jain R, Jain A. Spectrophotometric method development and validation for quantitative estimation of amlodipine besylate in bulk drug and their dosage forms by using hydrotropic agent. Eur J Anal Chem. 2010; 5(3): 212-217.
- 15. Pingale PL, Kumar G. Design, development and validation of analytical method for amlodipine copper complex using UV-VIS spectrophotometer. International Journal of Pharmaceutics and Drug Analysis. 2016; 4(1):1-15.
- 16. Naveed S, Qamar H, Jawaid W, Bokhari U. Simple UV spectrophotometric assay of amlodipine. American Journal of Chemistry and Application. 2014; 1(4): 66-69.
- Attimarad M, Venugopala KN. Development of UV spectrophotometric procedures for determination of amlodipine and celecoxib in formulation: use of scaling factor to improve the sensitivity. Journal of Spectroscopy. 2019; 1:1-10.
- Juyal V, Chaudhary M, Kumar P, Gnanarajan G, Yadav PK. Method development and its validation for simultaneous estimation of atorvastatin and amlodipine in combination in tablet dosage form by UV spectroscopy using multi-component mode of analysis. Journal of Pharmacy Research, 2008; 1(2):182-187.
- Sharma K, Sharma Y, Sharma P. Validated method development for estimation of atorvastatin and amlodipine in solid dosage regimens. International Journal of Research and Development in Pharmacy and Life Sciences. 2013; 2(2):344-348.
- 20. Sayyed ZM, Shinde SA, Chaware VJ. Development and validation of UVspectrophotometric method for simultaneous estimation of amlodipine besylate and hydrochlorothiazide in combined dosage form including stability study. Journal of Pharmaceutical Science and Bioscientific Research. 2015; 5(5):487-493.
- 21. Dyade GK, Garad P, Jadhav P.A QBD approach in chemometric assisted method development of telmisartan and amlodipine besylate by UV-Vis spectrophotometry. Asian J Pharm Tech. 2022; 12(3):218-224.
- 22. Das P, Patel S, Radhika PP, Subramanyam EVS, Sharbaraya A. Simultaneous estimation of aliskiren and amlodipine in tablet dosage form by UVspectroscopy. International Journal of Drug Development and Research. 2012; 4(2):265-270.
- 23. Gupta KR, Mahapatra AD. Simultaneous UV spectrophotometric determination of valsartan and amlodipine in tablet. Int J Chemtech Res. 2010; 2(1):551-556.

- Kasture AV, Ramteke M. Simultaneous UV spectrometric method for estimation of atenolol and amlodipine besylate in combined dosage form. Ind J Pharm Sci. 2006; 68 (3): 394-396.
- 25. Kasture AV, Ramteke M. Simultaneous UV spectrophotometric method for estimation of atenolol and nifedipine in solid dosage form. Ind J Pharm Sci.2005; 752-754.
- Modi DV,Patel PU. Development and validation of simultaneous equation method for simultaneous estimation of telmisartan and nifedipine in synthetic mixture. International Research Journal of Pharmacy. 2016; 7(5):6-9.
- Patre NG, Patil SS. Development and validation of stability indicating assay method for determination of felodipine in tablet dosage form. International Journal of Pharmaceutical Sciences and Drug Research. 2018; 10(4):268-273.
- Jain PS, Ansari NA, Surana SJ. HPTLC and RP-HPTLC method development and validation for the estimation of felodipine in bulk and pharmaceutical formulation. Pharmaceutica Analytica Acta. 2018; 9(11): 1-6.
- 29. Abdel-Maaboud IM, Omar MA, Hammad MA, Abobakr AM. Development and validation of TLC-densitometric method for simultaneous determination of two binary antihypertensive mixtures containing felodipine in fixed dose combinations. Biomedical Chromatography. 2015; 30(2): 200-207.
- Rao JR. HPTLC method development and validation for simultaneous estimation of metoprolol succinate and felodipine in bulk drugs and combined dosage forms. Int J Pharma Bio Sci. 2018; 9(2): 1-7.
- 31. Sumithra S. Development of validated UV spectroscopic and chromatographic methods for the estimation of isradipine in bulk drug and butylated hydroxyanisole in selected food stuffs. Master's thesis, Sri Ramakrishna Institute of Paramedical Sciences, Coimbatore.
- 32. Pandya KK, Satia M, Gandhi TP, Modi IA, Modi RI, Chakravarthy BK. Detection and determination of total amlodipine by high performance thin-layer chromatography: A useful technique for pharmacokinetic studies. Journal of Chromatography. 1995; 667(2): 315-320.
- 33. Jain PS, Patel MK, Bari SB, Surana SJ. Development and validation of HPTLC method for simultaneous determination of amlodipine besylate and metoprolol succinate in bulk and tablets. Ind J Pharm Sci. 2012; 74(2): 152-156.
- 34. Suresh B, Meyyanathan SN. HPTLC method for the simultaneous determination of amlodipine and benazepril in their formulations. J Chromatogr Sci. 2005; 43(2):73-75.
- 35. Dhandapani B, Anjaneyulu N, Venkateshwarlu Y, Rasheed SH. HPTLC method development and validation for the simultaneous estimation of amlodipine besylate and

nebivolol hydrochloride in tablet dosage form. Journal of Pharmacy Research. 2010; 3(2): 332-334.

- 36. Marolia BP, Bodiwala KB. Development and validation of HPTLC method for simultaneous estimation of amlodipine besylate, hydrochlorothiazide and telmisartan in their combined tablet dosage form, Pharm Methods. 2016; 7(1): 48-53.
- 37. Attala K, Eissa MS, El-Henawee MM. Application of quality by design approach for HPTLC simultaneous determination of amlodipine and celecoxib in presence of processrelated impurity. Microchemical Journal. 2020; 162(1):1-28.
- 38. Solanki T, Shah P, Patel KG. Central composite design for validation of HPTLC method for simultaneous estimation of olmesartanmedoxomil, amlodipine besylate and hydrochlorothiazide in tablets. Ind J Pharm Sci. 2014; 76(3): 179-187.
- SharmaM, Kothari C, Sherikar O, Mehta P. Concurrent estimation of amlodipine besylate, hydrochlorothiazide and valsartan by RP-HPLC, HPTLC and UV spectrophotometry. J Chromatogr Sci. 2014; 52(1): 27-35.
- 40. Deshmukh TB, Deo S, Inam FS, Lambat TL. Development and validation of novel HPTLC method for the simultaneous estimation of amlodipine besylate and telmisartan in tablet dosage form using ICH Q2 (R1) directions. Journal of the Chinese Advanced Materials Society. 2018; 6(4): 329-340.
- Soliman M, Daewish MK, Abdel-Razeq S. Determination of amlodipine besilate and azilsartanmedoxomil by UHPLC, HPTLC and spectrophotometric techniques. International Research Journal of Pure and Applied Chemistry. 2019; 19(3): 1-13.
- 42. Argekar AP, Powar SG. Simultaneous determination of atenolol and amlodipine in tablets by high-performance thin-layer chromatography. J Pharm Biomed Anal. 2000; 21(6): 1137-1142.
- 43. Patel TR, Patel TB. HPTLC method for simultaneous estimation of aliskiren, amlodipine, and hydrochlorothiazide in synthetic mixture using quality by design approach. J Liq Chromatogr Rel Technol. 2015; 38(16):1546-1554.
- 44. Dubey N, Jain A, Raghuwanshi AK, Jain DK. Stability-indicating HPTLC method for simultaneous estimation of amlodipine besylate, hydrochlorothiazide and olmesartanmedoxomil in combined tablet dosage forms. Journal of Planar Chromatography. 2012; 25(5): 475-480.
- 45. Wankhede SB, Raka KC, Wadkar SB, Chitlange SS. Development and validation of stability-indicating HPTLC method for analysis of amlodipine besilate, losartan potassium

and hydrochlorothiazide in pharmaceutical dosage form. Journal of Pharmaceutical Research. 2010; 9(2): 60-62.

- 46. Karunanidhi SL and Sivasubramanian L. Simultaneous analysis of losartan potassium, amlodipine besylate, and hydrochlorothiazide in bulk and in tablets by high-performance thin layer chromatography with UV absorption densitometry. J Anal Methods Chem.2012; 1:1-5.
- 47. Patravale VB, Nair VB, Gore SP. High performance thin layer chromatographic determination of nifedipine from bulk drug and from pharmaceuticals. J Pharm Biomed Anal. 2000; 23(4):623-627.
- Mennickent S, Contreras J, Schulz B, Marta de Diego. High performance thin layer chromatographic determination of nifedipine in human serum after liquid-liquid extraction. Química Nova. 2012; 35(2):411-415.
- 49. Liandong H, Qiaofeng H, Gao N. A validated stability-indicating HPLC method for the determination of felodipine and its related substances. International Journal of Pharmaceutical Sciences and Research. 2013; 4(9): 3369-3374.
- 50. El Yazbi FA, Mahrous ME, Hammud HH, Sonji GM, Sonji NM. Comparative spectrophotometric, spectrofluorometric, and high- performance liquid chromatographic study for the quantitative determination of the binary mixture felodipine and ramipril in pharmaceutical formulations. Analytical Letters. 2008; 41(5): 853-870.
- Gedil F, Osman U, Atay O. Quantitative determination of felodipine in pharmaceuticals by high pressure liquid chromatography and UV spectroscopy. Turkish J Pharm Sci. 2004; 1(2): 65-76.
- Salunkhe NH, Jadhav NR, Bhinge SD. Validated RP-HPLC method for quantification of felodipine in rabbit plasma: application in a bioequivalence study. Annales Pharmaceutiques Françaises. 2019; 77(1): 15-27.
- 53. Bhavana G, Indira Priyadarshini G, Apuroopa. Method development and validation of stability indicating RP-HPLC for the estimation of felodipine PR tablets. Asian Journal of Pharmaceutical Analysis. 2020; 10(4): 207-212.
- 54. Jarag RJ, Paradkar AR. Development and validation of method for quantitative estimation of felodipine agglomerates by high pressure liquid chromatography. Asian J Research Chem. 2011; 4(1): 88-90.
- 55. Migliorança LH, Barrientos-Astigarraga RE, Schug BS, Blume HH, Pereira AS. Felodipine quantification in human plasma by high-performance liquid chromatography

coupled to tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2005; 814(2): 217-223.

- 56. Kim S, Lee HJ. Development and validation of a high-throughput method for the quantitative analysis of felodipine in human plasma using high-performance liquid chromatography with mass/mass spectrometer and its application to a bioequivalence study in healthy male korean subjects. Journal of Pharmaceutical Investigation. 2012; 42(4):177-184.
- 57. Annapurna MM, Sai Pavan Kumar B, Goutam SVS. Stability-indicating RP-HPLC method for the determination of felodipine (a calcium channel blocker) in tablets. Indo American Journal of Pharmaceutical Research. 2013; 3(11): 9277-9285.
- 58. Ahmed S, Atia NN, Bakr Ali MF. Ultrasound assisted dispersive liquid-liquid microextraction coupled with high performance liquid chromatography designated for bioavailability studies of felodipine combinations in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2017; 1046: 200-210.
- 59. Setti A, Takhelmayum PD, Praveen Kumar Reddy Y, Sarikonda S, Venkateshwara Rao J, Pawar SC. Method development, validation and stability studies of felodipine by RP-HPLC and molecular interaction studies of felodipine and voltage gated L-type calcium channel. Int J Pharm Sci Rev Res. 2014; 24(1):15-20.
- 60. Taha EA, Fouad MM, Attia AK, Zainab MY. RP HPLC method development and validation for simultaneous estimation of ramipril and felodipine. European Journal of Chemistry. 2019; 10(2):113-117.
- 61. Emam AA, Naguib IA, Hassan ES, Abdelaleem EA. Development and validation of RP-HPLC and an ecofriendly HPTLC method for simultaneous determination of felodipine and metoprolol succinate, and their major metabolites in human spiked plasma. Journal of AOAC Int. 2020 Jul; 103(4): 966-971.
- 62. Raja B, Lakshmana Rao A. Development and validation of RP-HPLC method for simultaneous estimation of ramipril and felodipine in pharmaceutical dosage forms. Asian Journal of Research in Chemistry. 2013; 6(11): 1018-1022.
- 63. Kumara Swamy G, Rajendra Kumar JM, Seshagiri Rao JVLN. Development and validation of stability indicating RP-HPLC method for simultaneous determination of enalapril maleate and felodipine in bulk and tablet dosage form. World Journal of Pharmaceutical Research. 2015; 4(4): 2087-2100.
- 64. Qin XZ, Demarco J. Simultaneous determination of enalapril, felodipine and their degradation products in the dosage formulation by reversed phase high-performance liquid

chromatography using a spherisorb C₈ column. Journal of Chromatography A. 1995; 707(2): 245-254.

- 65. Chinna Reddy P, Gannu R, Shravan Kumar Y, Yamsani VV, Yamsani MR. Development of a high-performance liquid chromatography method for simultaneous determination of pioglitazone and felodipine in pig serum: Application to pharmacokinetic study. Biomedical Chromatography. 2011 Aug; 25(8): 952-958.
- 66. Shah J, Parmar K. Development and validation of HPLC method for analysis of some antihypertensive agents in their pharmaceutical dosage forms. Journal of Drug Delivery and Therapeutics. 2014; 4(2): 12-15.
- 67. Jadhav NR, Kambar RS, Nadaf SJ. RP-HPLC method for simultaneous estimation of atorvastatin calcium and felodipine from tablet dosage form. Current Pharma Research. 2012; 2(4): 637-642.
- Younus M, Pasha I. RP-HPLC method development and validation for estimation of isradipine in tablet dosage form. Asian Journal of Pharmaceutical and Clinical Research. 2013; 6(1):140-142.
- 69. Aswini G, Dachinamoorthy D, Babu Y, Surekha M, Swamy G. Development and validation of isradipine in bulk and in its pharmaceutical formulation by RP-HPLC method. International Research Journal of Pharmacy. 2012; 3(9):131-133.
- 70. Pasumarthy NV Gopal, Srinivas VDN, Padma SVN. RP-HPLC estimation of isradipine in pharmaceutical dosage forms. Asian Journal of Chem. 2008; 20(8): 6097-6102.
- Nageswara Rao R, Nagaraju P, Shrinivasulu C, Sumanth Raddy V, Suresh V. HPLC method for estimation of isradipine in pharmaceutical dosage form. International Journal of Chem Sci. 2004; 2(3): 345-350.
- 72. Simoes RA, Moraes de Oliveira AR, Bonato PS. Hollow fiber-based liquid-phase microextraction of isradipine and its main metabolite followed by chiral HPLC analysis: Application to an in vitro biotransformation study. Analytical and Bioanalytical Chemistry. 2011 Mar; 399(7): 2435-2443.
- Al-Suwayeh , Saleh A. Quick, simple, and sensitive HPLC method for determination of Isradipine in plasma and its application in pharmacokinetic studies. Analytical Letters. 2002; 35(7):1205-1213.
- 74. Elghany MFA, Elzeany BE, Elkawy MA, Stewart JT. A stability indicating high performance liquid chromatographic assay of isradipine in pharmaceutical preparations. Analytical Letters. 1996; 29(7):1157-1165.

- 75. Chaitanya KK, Gowri Sankar D, Israel DS, Vijaya Lakshmi A, CH. Narasimha Kumar. Isocratic reverse phase liquid chromatographic method for the quantification of isradipine by UV detection in tablets. European Journal of Applied Engineering and Scientific Research. 2012; 1(4):220-227.
- 76. Sah R, Arora S. Development and validation of a HPLC analytical assay method for amlodipine besylate tablets: A potent ca+2 channel blocker. Journal of Advanced Pharmacy Education and Research. 2012; 2(3): 93-100.
- Zarghi A, Foroutan SM. Validated HPLC method for determination of amlodipine in human plasma and its application to pharmacokinetic studies. Farmaco. 2005; 60(9): 789-792.
- 78. Madhukar A, Kannappan N, Kumar M. Analytical method development and validation for the determination of hydrochlorothiazide, amlodipine besylate and telmisartan hydrochloride in multicomponent tablet dosage form and in biorelevant media by RP-HPLC. International Journal of Pharmacy and Pharmaceutical Sci. 2015; 7(1): 218-225.
- El-Gizawy SM, Abdelmageed OH. Development and validation of HPLC method for simultaneous determination of amlodipine, valsartan, hydrochlorothiazide in dosage form and spiked human plasma. American Journal of Analytical Chemistry. 2012 Jun; 3(6): 422-430.
- Jena A, Madhu M, Latha S. Analytical method development and validation of simultaneous determination of atorvastatin calcium and amlodipine besilate in tablet dosage form by RP-HPLC. International Journal of Pharmaceutical Sciences and Research. 2010; 1(11): 100-106.
- Younus M, Karnaker Reddy T.RP-HPLC method development and validation for simultaneous estimation of amlodipine besylate, valsartan and hydrochlorothiazide in tablet dosage form. Journal of Pharmacy Research. 2010; 3: 2647-2650.
- 82. Shaik M, Narendra Kumar Reddy K, Swetha P. RP-HPLC method development and validation for simultaneous estimation of amlodipine besylate and telmisartan in tablet dosage form. Indian Journal of Research in Pharmacy and Biotechnology. 2017; 5(1): 74-76.
- 83. Kayal SD, Khan FA. Method development and validation for the simultaneous determination of amlodipine besylate and telmisartan in tablet dosage form by RP-HPLC. International Journal of Pharmaceutical Research and Development. 2011; 3(5): 144-153.

- Prajapati J, Patel A. Analytical method development and validation of amlodipine besylate and perindopril erbumine in combine dosage form byRP-HPLC. Int J Pharmtech Res. 2011; 3(2): 801-808.
- 85. Jayaseelan S, Rajasekar M. RP-HPLC method development and validation for simultaneous estimation of losartan potassium, amlodipine besylate and hydrochlorothiazide in tablet dosage form. Der Pharma Chemica. 2010; 2(3): 31-36.
- 86. Celebier M, Kaynak MS, Altınoz S, Sahin S. HPLC method development for the simultaneous analysis of amlodipine and valsartan in combined dosage forms and in vitro dissolution studies. Brazilian Journal of Pharmaceutical Sciences. 2010; 46(4): 761-768.
- Chitlange SS, Imran M, Sakarkar DM. RP-HPLC method for simultaneous estimation of amlodipine and metoprolol in tablet formulation. Asian Journal of Pharmaceutics. 2014; 2(4):198.
- Zendelovska D, Simeska S, Sibinovska O, Kostova E, Jakovski K, Zafirov D. Development of an HPLC method for the determination of nifedipine in human plasma by solid phase extraction. J Chromatogr B Analyt Technol Biomed Life Sci. 2006; 839(1-2): 85-88.
- Beaulieu N, Curran NM, Graham SJ, Sears RW, Lovering EG. Validation of an HPLC method for nifedipine and its related substances in raw materials. J Liq Chromatogr Rel Technol. 1991; 14(6): 1173-1183.
- Thulasamma P, Venkateswarlu P. RP-HPLC method for the quantitative determination of nifedipine in dosage forms, human milk and urine. Research J. Pharm. and Tech. 2012; 5(3): 322-327.
- 91. Sanka K, Gullapelli R, Patil N, Padmanabha Rao A, Divan PV. Development and validation of RP-HPLC method for nifedipine and its application for a novel proniosomal formulation analysis and dissolution study. Der Pharma Chemica. 2014; 6(1): 279-289.
- 92. Modi T, Patel B, Patel J. Development and validation of stability indicating RP-HPLC method for simultaneous estimation of lignocaine HCl and nifedipine in cream. Research and Reviews: Journal of Pharmaceutical Analysis. 2016; 5(1): 1-37.
- 93. Granada A, Tagliari MP, Soldi V, Silva AS, Zanetti-Ramos BG, Fernandes D, Stulzer HK. Nifedipine-loaded polymeric nanocapsules: Validation of a stability-indicating HPLC method to evaluate the drug entrapment efficiency and in vitro release profiles. J AOAC Int. 2013; 96(2): 276-281.
- 94. Logoyda L. HPLC-MS/MS method development for the quantitative determination of nifedipine for Caco-2 permeability assay. Pharmacia. 2020; 67(2): 83-88.

- 95. Kamble N, Asirvatham S. Analytical method development and validation of nifedipine and atenolol in a capsule formulation by RP-HPLC. International Journal of Pharmaceutical Research and Bio Science. 2014; 3(6): 347-361.
- 96. Kedar MS, Shirbhate MP, Sanap MS, Kankate RS, Jadhav PB, Warude BJ. Development and validation of RP-HPLC method for the estimation of process related impurity from nifedipine. European Journal of Molecular and Clinical Medicine. 2020; 7(8): 5593-5601.
- 97. Hashem H, Ehab A, Magda E. A novel stability indicating HPLC method for simultaneous determination of atenolol and nifedipine in presence of atenolol pharmacopeial impurities. Journal of Applied Pharmaceutical Sciences. 2015; 5(8): 17-25.
- 98. Awad YU, Patel SK, Dinesh Kumar, Bari SA. Estimation of nifedipine by reverse phase HPLC chromatography in tablet dosage form. Int J Pharm Life Sci. 2011; 2(3): 610-612.
- 99. Sudheer Kumar R, Gobinath M, Haribaskar V, Dhani R, Pavan Kumar V. Method development and validation for simultaneous estimation of nifedipine and triamterene by using RP-HPLC in bulk and pharmaceutical dosage form. International Journal of Chemistry and Pharmaceutical Sciences. 2023; 11(1): 452-460.
- 100. Arunsrikar M, Chandan RS, Tengli AK, Venkata Sairam K. Validation of stability indicating ultra-fast liquid chromatography method for simultaneous estimation of atenolol and nifedipine in both bulk and pharmaceutical dosage form. International Journal of Current Pharmaceutical Research. 2018; 10(3): 27-32.
- 101.Singh NK, Shelke A, Shinde M, Jadhav AG. Development of validated reversed phase HPLC method for the estimation of nifedipine in situ gel form. International Journal of Pharmaceutical and Biological Archives. 2019; 10(1):32-36.
- 102.Asirvatham S, Kamble NS. Method development and validation for simultaneous estimation of atenolol and nifedipine in pharmaceutical dosage form by RP-HPLC. International Journal of Pharmaceutical Research and Bio Science. 2014; 3(9): 1466-1475.
- 103.Logoyda L, Korobko D ,Ivanusa I. Development of the methodology of the chromatographic determination of nifedipine in medicines. Asian J Pharm Clin Res.2017; 10(3): 149-152.
- 104.Asthana S, Kaur V, Chawla P, Saraf SA. Sensitive HPLC-UV method for simultaneous estimation of nifedipine, nateglinide and lovastatin: Quantitative application to polypill based synthetic ternary mixture. Int J PharmTech Res. 2010; 2(1): 682-688.
- 105.Nippas I, Daftasios AC. HPLC method for determination of nifedipine in plasma and its use in pharmacokinetic studies. J Pharm Biomed Anal. 2003; 32(6): 1213-1218.

- 106.Chen R, Huang J, Lv C, Wei C, Li R, Yuan G, Liu X, Wang B, Guo R. A more rapid, sensitive, and specific HPLC-MS/MS method for nifedipine analysis in human plasma and application to a pharmacokinetic study. Drug Res. 2013; 63(1):38-45.
- 107.Abdallah I, Ibrahim A, Ibrahim N, Rizk M, Tawakkol S. Simultaneous determination of atenolol and nifedipine by using spectrophotometric method with multivariate calibration and HPLC method implementing design of experiment. Pharm Anal Acta. 2015; 6(6):2153-2435.
- 108.Xing Y, Wang J.Determination of nifedipine content and its uniformity in tablets by high performance liquid chromatography. Se Pu. 1999; 17(3):308-309.
- 109. Ansari YA, Qazi S, Rumana U, Patel A, Pathan VT, Shaharukh M. Development and validation of stability-indicating reverse phase- high performance liquid chromatography method for simultaneous determination of atenolol and nifedipine in bulk and tablet dosage form. International Journal of Pharmaceutical Quality Assurance. 2020; 11(2): 219-223.