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Abstract—Artificial Intelligence (AI) has revolutionized the 
world by providing unprecedented benefits to industries 
ranging from healthcare to finance. Just like organic life, 
artificial intelligence (AI) cannot exist without water. It uses 
water directly to cool its massive server rooms and indirectly at 
the power stations that produce electricity for those servers. 
The total water consumption of AI is called its ‘water 
footprint’. Popular new AI tools like ChatGPT and BARD fall 
in the category of ‘large language models’ and have a huge 
water footprint . These models are trained on massive language 
datasets that are hosted on stacks of energy-hungry servers. 
Their operation produces a lot of heat. Server work best at 10-
27 degrees Celsius, and to maintain this temperature range 
server farms employ large cooling towers. The study 
distinguishes between “Withdrawal” and “Consumption”. 
Withdrawal refers to the physical extraction of water from 
rivers, lakes and other sources, while consumption relates to 
the water loss due to evaporation when used in data centers. It 
will also measure the ‘water footprint’ of large AI models like 
Open Ai’s ChatGPT. It found that the water consumed to run 
ChatGPT, which is used by billions of users worldwide is 
“extremely large”. The study highlights the importance of 
addressing water footprint of AI models in order to address 
global water crisis. Finally present some ideas to how to reduce 
the water footprint of AI models.  
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I. INTRODUCTION  

The increasing popularity of AI tools such as OpenAI’s 
ChatGPT has raised concerns about their environmental 
impact. Training Large AI models like GPT-3 can consume 
up to 700,000 liters of clean fresh water [12]. According to 
the down to earth report, this amount water is equivalent to 
producing 370 BMW cars or 320 Tesla electric vehicles.[7] 
The upcoming GPT-4 which is expected to be even larger, is 
predicted to further increase water consumption, although 
specific estimates are challenging due to limited data 
availability. While AI activities occur digitally, the physical 
storage and processing of data in data centers generate heat , 
requiring water-intensive cooling system. These systems use 
pure freshwater and also require significant water for power 
generation. 
 
 

 

                                
Fig.1: Map of drought prone districts of India for August , 2022.[20] 

Fig. shows that 42% of the India area can be under severe 
drought or worse [13], where hundreds of data centers. 
Clearly results in a huge environmental impact on regional 
water system. Additionally, due to the aging public water 
infrastructure, the need for water conservation remains 
equally important, even in non drought areas. More-over, it 
is extremely costly to expand the aging public water 
infrastructure that is already operating near limits in many 
parts of the world .The addition of water-thirsty data center 
to accommodate new AI model development can certainly 
worsen the situation . 

II. HOW COOLING TOWERS WORKS  

Cooling towers works on the same principle as traditional 
room coolers. When water evaporates it absorbs heat from 
its surrounding and reduces the ambient temperature. The 
water vapor rises inside the cooling tower and is released 
into the atmosphere. As a result, the water used by data 
centers is lost and cannot be recycled. This is doubly 
problematic because cooling towers at data centers can use 
only clean fresh water. Say, from rivers and lakes, sea water 
is not an option because its high salt content would cause 
corrosion, damaging sensitive equipment at data centre.  
 

.     III.     THE WATER CONSUMPTION IN DATA CENTERS 

The water consumption in data centers has two parts – on 
site direct water and off-site indirect water. 
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Fig 2.: Data center water footprint: on-site water consumption for data 
center cooling,and off-site water consumption for electricity 
generation.[23] 

A.      On-Site direct water consumption  

There are two water loops: one closed loop between the 
chiller and data center server rooms, and one open loop 
between the cooling tower and the chiller. Within the closed 
loop, water is not lost-it is pumped from the chiller into the 
data center to cool down the air handling unit supply air in 
order to maintain a proper server inlet temperature, and 
warm water that absorbs the server heat returns to the chiller 
direction . Through a heat exchange at the chiller, the heat is 
transferred from the closed loop to the open loop. 
       Along the open loop, some of the water gets evaporated 
(consumed) in the environment. Additionally there is a 
process called “blown down” that drains the cooling water 
to reduce salt concentration. 

B.      Off-Site direct water consumption 

Data centers are held accountable for carbon footprint 
because of their (non-renewable) electricity usage. 
Likewise, electricity generation requires a huge amount of 
water, thus resulting in off-site indirect water consumption 
for data center. 
 

 IV.   ESTIMATING WATER FOOTPRINT OF AI MODELS 

To obtain an AI Models total water footprint, We consider 
both on-site WUE and off-site WUE. 
 

A. On-Site WUE 

Cooling towers are most commonly used as the heat 
rejection mechanism for data centers. In general, the on-site 
WUE of cooling towers depends on multiple factors, such as 
temperature approach setting (i,e, difference between the 
cold water temperature and entering wet bulb temperature), 
Cycles of concentrations (i,e water recirculation times 
before “blow down”) , water flow rate, air pressure, 
humidity, wet-bulb temperature, and wind speed, among 
many others. Due to the lack of operational data from major 
data centers, we focus on the impact of outside wet-bulb 
temperature. On the on-site WUE  and present an empirical 
model based on a commercial cooling tower[18]. 
Specifically, following recommended operational setting , 
the on-site WUE can be approximated as  
 
WUE on = s/s-1(6x10ˉ5  . Tw

3 – 0.01. Tw
2 + 0.61. Tw – 10.40)                                

                                                                                        (1) 
Where S is the cycle of concentrations and Tw is the outside 
wet bulb temperature ( in Fahrenheit) .  
 

B. Off-Site WUE 

We now present the off-site indirect WUE measured in term 
of EWIF (Electricity Water Intensity Factor ). The same 
way as AI models are accountable for carbon footprint 
associated with off-site electricity generation. Specifically, 
the off-site WUE depends on the energy fuel mixes (e.g., 
coal, nuclear, hydro) as well as cooling techniques used by 
power plants [10]. Since electricity produced by different 
energy fuel becomes non-differentiated once entering the 
grid, we consider the average EWIF, which can be estimated 
as    
 

WUE off  =   
∑ ௕௞∗ாௐூி௞ೖ

∑ ௕௞ೖ
                                                    (2) 

 
Where bk  denotes the amount of electricity generated from 
fuel type k for the grid serving the data center under 
consideration , and EWIFk  is the EWIF for fuel type  k [14].  
 

A. Water footprint  
The on-site direct water consumption can be obtained by 
multiplying AI’s energy consumption with the on-site WUE, 
while the indirect water consumption depends on the 
electricity usage 10 minutes to an hour depending on how 
frequently we want to assess the water footprint, and T is the 
total length of interest ( e.g., training stage, total inference 
stage, or a combination of both). At time t, suppose that an 
AI model uses energy et . (which can be measured using 
power meters and/or servers’ built-n tools), the on-site WUE 
is WUEon,t , the off-site WUE is WUEoff,t, and the data center 
hosting the AI model has a power usage effectiveness (PUE) 
of PUEt  that accounts for the non-IT energy such as cooling 
system and power distribution losses. Then, the total water 
footprint W of the AI model can be written as.  
 
W= W on + W off  

     = ∑ 𝑒𝑡 .  𝑊𝑈𝐸𝑜𝑛, 𝑡 +  ∑ 𝑒𝑡 . 𝑃𝑈𝐸𝑡 . 𝑊𝑈𝐸𝑜𝑓𝑓, 𝑡்
௧ୀଵ

்
௧ୀଵ                (3) 

 

TABLE I.  Estimated EWIF for Common Energy Fuel Types in the 
US [17] 

Fuel 
Type 

Coal  Nuclear  Natural 
Gas 

Solar(PV) Wind  Other Hydro 

EWIF 1.7 2.3 1.1 0 0 1.8 68 

Our methodology for estimating AI models’ water footprint 
is general and applies to data centers with any type of 
cooling systems. For example, if the data center uses a 
cooling tower other than the one we model, we only need a 
different WUEon,t.  
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Fig 3.: On-site Water Footprint of Pune location  in 2022 

 

V. CARBON/WATER TRADE-OFF 

Data centers located in countries such as Sweden and 
Finland use less water because of the naturally cooler 
condition . But in the Asis-Pacific region, where a lot of the 
AI action is now concentrated,higher ambient temperatures 
push up the need for water. There often a trade-off between 
carbon efficiency and water efficiency. You can generate 
more solar energy to run servers in the 
afternoon[21]so,smaller carbon footprint, but then you need 
more water for cooling as it is the hottest time of the day. 

      AI model developers may want to train their models 
during the noon time when solar energy is more abundant, 
but this is also the hottest time of the day that leads to the 
worst water efficiency, In other words, adopting renewable 
energy can sometimes come in the way of water 
conservation. The challenge, then, is to find a way to 
balance carbon and water efficiencies through new 
approaches to sustainable AI. 
 

VI.      WHAT COMPANIES ARE DOING 

Most AI companies have pledged to make their system 
sustainable by 2030.One solution, could be to run AI model 
training in different locations at different points in time. 
Microsoft says its data centers in Phoenix, Arizona, which 
hosted the training of GPT-3 and its advanced version 
ChatGPT4, saved water by using outdoor air to chill servers 
for most of the year. They otherwise cool through direct 
evaporation, which uses a fraction of the water required by 
other, more traditional, water-based cooling system like 
cooling towers. 
 Microsoft further plans to save a million liters of water 
daily by switching from conventional energy to Solar energy 
from the “Sun Stream 2 Solar Project.”Operated by local 
partner Long road Energy. Google, meanwhile, uses a mix 
of air cooling, water cooling, refrigerants, or some 
combination of them, to reduce its water consumption. The 
decision is based on hyper local condition, and a data-driven 
approach to local hydrology, topography, energy ,and 
emissions issues, 
 
 
 

 

 

CONCLUSION 

In this paper, we recognize the enormous water footprint as 
a critical concern for socially responsible and 
environmentally sustainable AI, and make the first-of-its-
kind efforts to uncover the secret water footprint of AI 
models. Specifically, we present a principled methodology 
to estimate the fine-grained water footprint, and show that 
AI models such as GPT-3 can consume a stunning amount 
of water in the order of millions of liters. In addition, we 
point out the need of increasing transparency of AI models’ 
water footprint, and highlight the necessity of holistically 
addressing water footprint along with carbon footprint to 
enable truly sustainable AI. 
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